d'autres kaléïdocycles   2/2

kaléïdocycle rectangle d'ordre 8

kaléïdocycle d'ordre 10

kaléïdocycle d'ordre 16




Ce "cube de Yoshimoto", aussi connu sous le nom de "Shinsei Miracle", est constitué de 24 pyramides identiques assemblées en deux kaléïdocycles d'ordre 12.
Le patron de ces kaléïdocycles est facile à dessiner : chaque bande verticale est le patron d'un tétraèdre, les douze rectangles verticaux sont de format A, et les triangles du haut sont rectangles isocèles (demi carré).

patron (demi-cube de Yoshimoto)


À gauche, un des tétraèdres dans une "moitié de cube". Ses faces sont :
 •  un triangle rectangle isocèle (un quart d'une face du cube),
 •  deux triangles rectangles (deux moitiés d'un rectangle de format A),
 •  un triangle isocèle formé par la réunion de ces deux triangles rectangles.
 
À droite, un des kaléïdocycles replié dans une "moitié du cube" ; les lignes magenta indiquent les 12 charnières : les six grandes sont des arêtes du cube, les six petites joignent le centre du cube aux centres de cinq faces (le segment rouge représente deux petites charnières superposées).


 variante    En regroupant les tétraèdres par paires et en utilisant les arêtes du cube comme arêtes de liaison on obtient UN anneau en zigzag de 12 tétraèdres qui n'est PAS un kaléïdocycle (sur chaque tétraèdre les arêtes de liaison sont perpendiculaires, donc adjacentes et non opposées comme pour les kaléïdocycles). Ce curieux objet, également conçu par Naoki Yoshimoto, permet d'obtenir, entre autres, d'intéressantes configurations triangulaires. Ce "flexaèdre" est un cube "invertible" : il peut être retourné pour former un dodécaèdre rhombique avec une cavité cubique limitée par les faces retournées du cube original.
Voici un extrait d'une vidéo (3'20 - 18 Mb) de Mickaël Launay (Micmaths) trouvée sur YouTube (environ 7 minutes).

patron (tétraèdre)

un des tétraèdres dans un cube le patron consiste en un demi-carré (a-a-a√2) entouré par trois triangles isocèles avec deux côtés de longueur a√3/2 l'anneau replié dans le cube dont les arêtes sont les 12 charnières (en magenta) ; elles ont trois par trois une extrémité commune, sauf aux extrémités d'une diagonale où les trois extrémités sont superposées mais libres, ainsi le cube peut s'ouvrir selon cette diagonale

références : •  le Shinsei Miracle (en allemand)
    et d'autres assemblages de kaléïdocycles (en anglais) : tetra one - cube one
•  boutiques en ligne : Kuboid GmbH - flyping-games


d'autres kaléïdocycles : IsoAxis - kaléïdo 1


page accueil
anglais
polyèdres convexes - polyèdres non convexes - polyèdres intéressants - sujets connexes février 2000
mis à jour 28-07-2016