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How 
“Shaky“ 
Is The Jessen‘s 
Orthogonal 
Icosahedron ?

Jessen‘s Orthogonal Icosahedron

“A shaky polyhedron constructed by 
replacing six pairs of adjacent triangles 
in an icosahedron (whose edges form a 
skew quadrilateral) with pairs of isosce-
les triangles sharing a common base. 
The polyhedron can be constructed by 
dividing the sides of the icosahedron in 
the golden ratio (as used in the construc-
tion of the icosahedron along the edges 
of the octahedron), but by reversing the 
long and short segments“.

You will find this upper statement 
on the webpage:

http://mathworld.wolfram.com/
JessensOrthogonalIcosahedron.html

Apart from the fact, that the construc-
tion-description is not correct, (see the 
correct construction on the left below) 
we are also faced with the question, if 
you would intensively study the solid 
body, if it can be shaky at all? 

In the appendix (page 18) are some thoughts 
about the movable polyhedra 
in correlation to the bellows conjecture.

The length of the radius of the 
circumcicle of the equilateral 
triangle (a) is the same
length as the half of the
short diagonal of the rhombus.
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(“shaky“ =
infinitesimally movable)
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“Vector equilibrium“

„The vector equilibrium (VE) is an 
omnidirectional equilibrium of forces 
in which the magnitude of its explosi-
ve potentials is exactly matched by the 
strength of its external cohering bonds“ 
(430.03)

“It is a hypothesis of synergetics that 
forces in both macrocosmic and micro-
cosmic structures interact in the same 
way, moving toward the most economic 
equilibrium packings. By embracing all 
the energetic phenomena of total physi-
cal experience, synergetics provides for 
a single coherent system of geometric 
principles“. ...(209.00)

„The vector equilibrium is a condition 
in which nature never allows herself 
to tarry. The vector equilibrium itself 
is never found exactly symmetrical in 
nature‘s crystallography. Ever pulsive 
and impulsive, nature never pauses her 
cycling at equilibrium : she refuses to get 
caught irrecover- ably at the zero phase 
of energy. She always closes her trans-
formative cycles at the maximum positi-
ve or negative asymmetry stages.“

R.Buckminster-Fuller “Synergetics“.

The VE, a torsion polyhedron, which has 
been brought to light by Buckminster-
Fuller (Jitterbug) in the 1940’s, offers 
several marvelous revelations. Besides 
it ́s ability to transform from an octahe-
dron to a cuboctahedron and vice versa,
it becomes apparent, that the Jessen´s 
orthogonal icosahedron, is exactly the 
middel position of, the VE on its way 
between the octahedron to the cubocta-
hedron (Pict. 1, red).
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As we have a look at this moving- 
path, we see, that there are many 
more pairs of concave icosahedra 
(Pict.: 1, blue).

The “cover form” of the first is the 
regular icosahedron. In Pict. 2. you 
can see the convex and the concave 
solid (red and blue) as well as the 3 
space planes of the inner 5 space-
cross of the icosahedron (green). 

Now let‘s have a look at the behavior 
of these three “special space plain’s”.
The amazing fact is that this concave 
icosahedron can appear in a second 
space form, (Pict. 3) keeping all the 
triangular plains the same (8 equila-
teral triangles, 12 isosceles golden 
triangles), (Pict. 2a).

The volume of the surface remains 
unchanged, but the space-volume of 
the solid has changed. 

The “cover form” in position 1 is, 
like we said, a regular icosahedron.
Now – in position 2 (see below)  
it has transformed into a golden 
icosahedron.

A golden icosahedron consists out of 
8 equilateral triangles and 12 iso-
sceles golden triangles, which are 
orthogonally opposite.

Pict. 2a

Pict. 3

Golden icosahedron

Pict. 2
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Isn‘t it amazing, that a solid, a 
polyhedron, whose faces are steady 
in their dimensions and in the positi-
on between each other, can be found 
in two different space forms?! 

How and what is the path from the 
first to the second position? 

The middel position

Icosahedron and golden icosahedron 
are one of the many „connected-so-
lid-pairs“ of the VE on it‘s path from 
octahedron to cuboctahedron. 

You can see that the longer sides (left 
I and II and right I and II - Pict.4) of 
the space plains (green) stay the same 
(in both the icosahedron and the gol-
den icosahedron) while the distance 
of the short sides (top and bottom) 
decrease in the golden ratio. 

concave-solid
of the icosahedron

concave-solid
of the golden 
icosahedron

Pict.: 4
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As we have a look at the middel posi-
ton of the VE (Pict.:4, red) we can see 
something very important! 

To get from the one (Pict. 2) to the other 
position (Pict. 3) there is another conca-
ve icosahedron, holding it’s own indivi-
dual space plain. 

This is the Jessen´s orthogonal icosahe-
dron. I call the “cover form”of this solid 
the medium “twenty surface solid” 
(Pict. 5) 

The JOI is a concave “brother-solid” of 
the medium “twenty surface solid”

By this individual space plain (Pict. 4, 
III, red), the longer sides (left and right) 
are extended minimally in their length. 

Something else comes about: 

This individual space plain has trans-
formed to a double square, whose short 
edge is at the ratio of approx 1:sqrt 1,5 
to the octahedron’s edge 1. I call this the 
“medium icosahedron” (Pict. 5)

As a result of this, we can say: 
“Yes” there are a lot of pairs of concave 
icosahedra which change their space-
form in two positions, holding their sur-
face-volume whilst transforming their 
space- volume. But it is impossible that 
the way from one position to the other, 
can be made in one movement (there is 
no other movement possible than the VE 
movement) unless the longer concave si-
des change in length (Pict.4, III), and/or 
the plains bend.  

Pict.: 5

concave-solid 
of the medium 
“twenty surface solid” 
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You can find another „connected-so-
lid-pair“. I call it the “big” and the 
“small icosahedron” (Pict. 6 + 7). 

The big icosahedron is very interes-
ting. The space plane dimensions in 
our special space-cross emerge from 
the proportions of the inscribed dode-
cahedron. 

The short edge (green) of the space 
plane of the small icosahedron is 
equal to the minor of the short edge 
of the dodecahedron that is inscribed 
into the big icosahedron (See dra-
wings on page 6 to 10).

Again we have two different polyhe-
dra affecting their space forms with 
constant volumes.

The outer form changes, but the inner 
volume stays the same.

Pict.: 6

Pict.: 7

long edge

dodecahedron edge

major minor

the small icosahedron

the big icosahedron

edge of the inscribed dodecahedron

concave-solid
of the big icosahedron

concave-solid
of the small icosahedron
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The „big icosahedron“ and the 
inscribed dodecahedron
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The space planes inside the dodecahedron



9

The lengths of the rectangle 
of the dodecahedron space planes

minor of the total distance
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A = the total distance of the space plane
B = the major (coextensive edge of the polar cube, also marking point of the vertex of the inside icosahedron)
C = minor of the long distance of the space plane rectangle, (coextensive outside edge of the dodecahedron, 
       also marking point of the vertex of the inside icosahedron)
D = minor von B (coextensive edge of icosahedron and edge of inside dodecahedron)

A

B

C

C

D

A

C

B

A

D

D
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With the assistance of the“Goldenen sections“ A, C and D we can construct the big twenty surface solid.
The measured distance of the six long edges are hidden in the dodecahedroen space planes.

A

CD D

C+D+D

C
+D

+D

A
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The movement of the “vector equilibrium“ 
from octahedron to cubeoctahedron.
Length of the edge of the octahedron = 1.

Seven possible positions - 
seven different polyhedra.
Three complementary pairs - one single.

The pictures below shows the described 
polyhedra, the “different“ space planes 
(white) and in the center the inscribed 
octahedron (blue)
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The last „connected-solid-pair“ is 
made by cuboctahedron and octahed-
ron (Pict. 8 + 9)

The 3 space planes of the cuboctahe-
dron are squares with an edge-length 
1*sqrt2. The 3 space planes in the 
octahedron have disappeared in the 
diagonals and the 6 corners of the 
octahedron.

Conclusion
The moving path of the VE can be 
divided in pairs of icosahedra which 
belong together as „connected-solid-
pairs“ (except the octahedron, the 
cuboctahedron and the individual 
medium icosahedron) – although you 
can define octahedron and cuboctahe-
dron as transformed icosahedra. 
I will come back to this later.

Two significant „connected-solid-
pairs“ have come to light. But there 
are as many pairs as the length of the 
movement-path allows.

We know that the octahedron-
cuboctahedron-pair can fill the space 
without gaps. What about the other 
pairs? And what about the medium 
icosahedron? How do they fit in the 
VE-family?

Pict.: 8

Pict.: 9

By cubeoctahedron 
and octahedron con-
cave and convex-solid 
become one.
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Net of the golden tetrahedron

The 
Space-Filling 
Icosahedra: 
Icosahedron And 
Golden Icosahedron
If we add a golden tetrahedron* 
to our pair of icosahedron and golden 
icosahedron, we can fill the space.

*2 of its 4 faces are golden isosceles 
triangles, where the short edge relate 
to the long edge in the golden ratio.

The dimensions of the tetrahedron‘s 
edges are a combination of both short 
edges of the space planes of both so-
lids with the basic-length 1.

If you would combine both short 
edges of the icosahedron and the 
golden icosahedron, as diagonales, 
you can build a golden rhombus. This 
rhombus is one of the surfaces of the 
rhombic triacontahedron which 
belongs to these both solids.

The surface of the rhombic 
triacontahedron

The icosahedron

The golden icosahedron

The golden icosahedron

The golden tetrahedron

The icosahedron

Icosahedron,
golden icosahedron and 
golden tetrahedron.
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The Big 
And The Small 
Icosahedron
If we add a fitting tetrahedron to the 
big and the small icosahedron we can 
fill the space too.

The dimensions of the tetrahedronsi-
des arise out of the combination of 
both small sides of the relating space 
edges of both solids with the basic 
length 1, just as we described before.

Net of the tetrahedron

The big twenty surface solid

The small 
twenty surface solid

Big twenty surface solid,
small twenty surface solid
and the corresponding
tetrahedron.

The small 
twenty surface solid

The tetrahedron

The big twenty 
surface solid
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Net of the tetrahedron

Pict.: 10

The medium 
twenty surface solid

The Medium 
Icosahedron
To fill the space, not leaving any 
gaps, the medium icosahedron needs 
only one tetrahedron. The sides of the 
tetrahedron are isosceles triangles. 
The shorter edge of each triangle has 
to be at a ratio of approx. 1:sqrt1,5.

A square emerges out of the diago-
nal-combination of both short sides 
of the space plane.

The square-edge-length is the same 
as the short edge length of the hidden 
dodecahedron within the big twenty 
surface solid. The whole square face 
is one of the 6 faces of the cube that 
is inscribed to the dodecahedron 
(Pict. 10). 

Combining these two irregular solids 
(icosahedron and tetrahedron) we 
CAN fill the space without leaving 
any gaps. If we do it with regular 
solids (icosahedron and tetrahedron) 
it won´t work!

And here we must realize that this
„medium twenty surface solid“ is 
the convex “brother solid“ of the 
Jessen´s orthogonal icosahedron!

The medium 
twenty surface solid

The tetrahedron

The medium 
twenty surface 
solid and the 
corresponding
tetrahedron.
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Octahedron 
And Cuboctahedron
We mentioned earlier that octahedron 
and cuboctahedron can be defined as 
transformed icosahedra.

You can also imagine the 6 square faces 
of the cuboctahedron as diagonal con-
nections (1*sqrt2) of two rectangular tri-
angles. By doing so, the cubeoctahedron 
wil consist out of 20 faces (Pict. 11).

The 12 edges of the octahedron build a 
line of the 12 variable triangular faces of 
the VE and so, you get 20 faces as well 
(Pict. 12).

You may also consider the cuboctahed-
ron being built out of 8 regular tetrahed-
ra and 6 half-octahedra (Pict. 13).

This shows you that all edges and con-
necting sections have the same length to 
the centre of the solid, namely the basic 
length 1.

Conclusion
By what we just have seen, we can 
conclude, that the VECTOR EQUILI-
BRIUM is worth it´s name in all it´s 
splendor!

It is an balancing instrument, similar 
to the scales. The forms of the weight 
objects, left and right, can be different, 
(space-volume) eventhough they have 
their weight in common (surface-volu-
me). They are pairs which belong toge-
ther. With help from a third element:
the belonging tetrahedron, they can fill 
the space without leaving any gaps.

By seeing these facts, again we are faced 
with the orderly wonders of space-
geometry.

© D. Junker / September 2008

The octahedron

The cubeoctahedron

Pict.: 11

Pict.: 12

Pict.: 13
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Some Thoughts about the 
movable polyhedra 
in correlation to the 
„bellows conjecture“
Abstract. „We show that any continuous 
flex that preserves the edge lengths of a 
closed triangulated surface of any genus 
in three-space must flex in such a way 
that the volume it bounds stays constant 
during the flex.“ (The bellows conjec-
ture, Connelly, Sabitov, Walz, 1997)

1.
There are concave polyhedra which can 
be made and/or already exist; they can 
come about in two or more space-forms. 
Eventhough they keep there SURFACE-
volume, they change in SPACE-volume. 

The expectation that all these polyhedra 
are flexible – somehow movable –, is not 
applicable in every case.

It is important to focus attention to the 
path on which the movement takes place; 
from one space form (with the biggest 
space volume in position 1) to the other 
space form (with the smallest space 
volume in position 2). Possibly, in some 
cases there are moving-paths in between 
the previous positions described. (Refer 
to article “How Shaky Is The Jessen´s 
orthogonal icosahederon?”)

1.1.
Concerning this moving-path: 
two categories of polyhedra exist.

1.1.1.
The first category is called “shaky”, 
“infinitesimally flexible or movable” but 
“multi-stable” at the same time.
Whilst passing the moving-path there are 
many stable forms possible, such as: Po-
sition 1 (biggest space volume), position 
2 (the smallest space volume).

The path from one stable form to the 
other can only be run through, when se-
veral hinge-edges change minimally, that 
means the surface volume and the length 
of the hinges of the matching solids can 
vary.

The Jessen´s orthogonal icosahederon 
SEEMS to belong to this category, but 
because of its dihedral angles it is not 
shaky at all and can only appear in one 
form!

The “Siamese Dipyramides” of Goldberg 
really belong to this category.

In other words: These polyhedra are not 
flexible in the sense of geometry. They 
have the special nature to manifest in 
different space forms whilst keeping 
their surface volume and changing their 
space volume.

The terms “Shaky” or “infinitesimally 
movable” are misleading. Because in this 
category of solids the movement cannot 
happen without changing the surface of 
the solid. 

In other words; if you would make such 
a solid out of strong, steel plates (very 
thin) of which the surface stays fixed 
(coplanar) and the hinges cannot stretch, 
either sideways or in length, but only 
using their function, then you can con-
clude that NO polyherdron of this cate-
gory would be possible to move at all. 

1.1.2.
The second category represents a “conti-
nuously movable linkage”. The moving-
path from position 1 to position 2 can be 
passed in one movement, without chan-
ging hinge-edges or surfaces.

Position 1 (biggest volume) can be mo-
ved to position 2 (smallest volume) and 
vice versa. Both positions are stable and 
any position within the moving-path as 
well. 
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Belonging to this category: “Shaking 
And Toppling Octahedron” of Wunder-
lich. A fact in these catagories is that the 
surface volume stays the same whilst the 
solid volumes changes. 

1.1.3.
If such a solid is really – hermetically 
– closed and airtight, then such a solid 
can not move. 

When “closed triangulated surface” in 
the “bellows conjunction” means air-
tightly closed, then they would not be 
able to move at all. 

1.1.4.
If “closed” means “constantly coherent 
at its edges and also not changing its sur-
face-volume”, then the soldis would be 
able to move, but only if the air would 
be able to get in-and-out. 
How does the air get in and out?

1.1.5.
Here is the following applicable: 
“It is also true that any continuous flex 
that preserves the edge lengths of a co-
herent triangulated surface of any genus 
in three-space can flex in such a way that 
the volume it bounds change during the 
flex.”

1.1.6.
Connelly, Sabitov and Walz described in 
the “Bellows Conjecture” in 1997: 
“All flexible polyhedra keep a constant 
volume in their movement.”
All of our studied examples, so far, have 
shown the contrary.

2.
Another category is the continuously 
movable linkage, where the space volu-
me really is constant all the time.
The “Connelly Sphere” and the 
“Steffen‘s Polyhedron” are the only 
known flexible polyhedra of this 
category.

Either these two polyhedra are the only 
flexible polyhedra – then the JOI is NOT 
shaky – or the bellows conjecture is not 
“generally applicable” but only applica-
ble to certain categories of polyhedra.

The “Bricard‘s Octahedra” shall not be 
mentioned here, because they are poly-
hedra whose outer faces are not closed. 
Some of the surfaces penetrate others on 
the path of movement.

A further exception in terms of flatness 
is the VE (Vector equilibrium) of Buck-
minster-Fuller. Here the corners (points) 
of the faces work as hinges, not the 
edges (lines).

3.
The last category is formed by all kalei-
docycles if they have a closed polyhedric 
form in their locked position. This poly-
hedric form can be convex or concave.
But consider that polyhedra of this 
category are dismantled to fraction-po-
lyhedra, which are conjugated on several 
edges to build a united link chain.
The “Schatz‘s Cube Belt” is the most 
famous solid of this category.

Conclusion:
1. The term “movability” applied to cer-
tain categories of concave polyhedra is 
not completly applicable with the 
“bellows conjecture”.

2. The term “closed” in the sense of 
“hermetically closed” refers rather to 
physics, where the “real volume” (maybe 
a bellows) is meant – not an imaginary 
volume in the sense of geometry. 
How does the bellows conjecture act in 
empty space without any air?
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3. The terms “shaky” and “infinitesimal-
ly” are misguiding. All really flexible 
solids are always just infinitesimally 
movable. The solids which are declared 
to be infinitesimally moveable within 
circles of Math and Geometry are not 
more than “multi-stable”. 

That means, they can manifest in va-
rious space forms, but on their moving-
path between two positions they have 
to change their surface-volume or they 
must give up their coherency.

4. In geometrically terms there are 
indeed flexible polyhedra, which change 
their volumes while moving, but keep 
coherent and maintain their surface-
volume.

D.Junker, Okt. 2008


