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ABSTRACT: This presentation deals with the historical development of the mathematical 
imagination of 3-dimensional polyhedra and inversion phenomena. It is only possible to conceive 
the laws of geometrical forms objectively in thought. As a rule, these thoughts are formed through 
observation (description, illustration, or object) based on sensory or inner perception. The 
observer’s perception is determined through his spatial standpoint in relation to the object he 
observes. Regular and semi-regular polyhedra are good examples of geometrically stable 
phenomena, introduced here as sensory objects in the form of descriptions, illustrations and as 
objects. The historical descriptions of polyhedra, examples and objects, are compared here from 
each spatial position of the observer towards the object under observation. 

Different standpoints give one-sided and mutually opposing perceptions and interpretations of space 
(e.g. inner as opposed to outer). Only a comprehensive overview can show the totality of spatial 
forms of a polyhedron, thereby revealing a spatial structure. Examples from the history of 
architecture complete the comparisons. Plato’s descriptions of regular solids and the Archimedean 
solids are compared with the accounts from the Renaissance (Leonardo da Vinci, Albrecht Dürer) 
and the discovery of the polar-Archimedean solids. An excursus on the history of architecture 
(Greek temple, basilica) completing the initial comparisions leads to a further comparison (pyramid, 
stone circle; or stone balls and a projection of regular polyedra).

In this second step, it is shown how polar-opposite ideas of space can be dynamically combined as a 
metamorphosis. If rhythmically developed, these metamorphoses appear cyclically. They can be 
shown as forms turned inside-out, through which, observing in thought, space is turned inside-out, 
or “inverted”. With this at the same time a comprehensive concept of space is described. Paul 
Schatz was one of the first to recognise the importance of this, demonstrable through special mobile 
models of the Platonic solids. He discovered inversion, a completely new kinesmatic kind of 
movement, different from translation and rotation. At the same time, he gave the bases for some 
initial technical applications out of inversion, which are presented at the end (OLOID technology, 
turbula). 

Keywords: regular polyhedra, history of human 3-D imagination, 3-D-inversion in engineering and 
science, Paul Schatz, inversion
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1.INTRODUCTION
Spatial consciousness is not a mathematical 
category, but a necessary prerequisite for 
comprehending mathematics and geometry. 
Geometry, though independent of space and 
time, can only be conceived in space and 
time. Consequently, it is relevant to speak of a 
historical development of geometrical 
discoveries. An aspect of this development 
are the presentations of regular polyhedra at 
various times in different cultural ages. Here I 
assume that a spatial consciousness 
corresponds to the respective presentation. If 
the special manner of a presentation depends 
on the degree of spatial consciousness, then 
retrospective appreciation of a spatial 
presentation rests on the spatial consciousness 
that comprehends it. If laws can be found in 
the historical development, these can shed 
light on present and future perspectives.

2.GREEK CIVILISATION AND THE 
RENAISSANCE

2.1Plato’s approach, Archimedes
Plato (427–347 B.C.) was the first to describe 
the five regular polyhedra. In his dialogue 
Timaeus he argues how, out of two kinds of 
triangles, four polyhedra are formed, and a 
fifth is mentioned. In the same way the 
Archimedean solids can be formed, but for 
this two or three kinds of polygons are used. 
If this is recreated in the imagination, then all 
kinds of convex, regular and semi-regular 
polyhedra arise. Observer and object face 
each other. The object presenting its exterior 
to the observer is perceived as convex. With 
Plato and Archimedes (c. 287 to 212 B.C.) 
these presentations remain as descriptions.

Fig. 1: From triangles, into polygons, into 
polyhedra; after Plato (Timaeus)

Fig. 2: Archimedean solids 

2.2Rome
Originating in Roman times, bronze 
dodecahedra are known on which the corners 
are emphasised through ball-like elements; 
the centres of the surfaces are open. The 
observer can see into them, yet, because of 
their size, he/she remains outside the objects.

Fig. 3: Bronze dodecahedron, Rome

2.3Renaissance: Leonardo, Dürer
In Leonardo da Vinci’s (1452–1519) 
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illustrations to Fra Luca Paciouli’s (1445– 
post 1503) Divina proportione (1509), the 
regular polyhedra—along with others—are 
closed and moreover presented as models 
with edges, that is, open. In contrast to the 
Roman dodecahedra, Leonardos’s 
dodecahedron with edges opens wider. The 
observer—in his imagination—can see 
through the polyhedron.

Fig. 4: Leonardo’s dodecahedron; illustration 
for Pacioli’s Divina proportione, 1509

In his book Unterweisung der Messung 
(1525) Albrecht Dürer (1471–1528) goes a 
step further. He draws the regular, and most 
of the semi-regular polyhedra on a plan, 
advising the reader or observer to trace the 
patterns and construct the models out of 
paper. If this is done, then as an observer one 
looks from inside the polyhedron. If large 
enough, it can entirely enclose the observer, 
who then can 
experience it as concave, not as convex.

Fig. 5: Albrecht Dürer’s dodecahedron plan, 
1525

Consequently, according to the spatial 
standpoint of the observer, polyhedra can be 
experienced as convex spatial bodies as well 
as concave; the later perception demands to a 
higher degree his/her imaginative 
involvement. For the semi-regular solids a 
similar situation applies. The Archimedean 
solids are easy to construct out of polygons. 
The polar-Archimedean solids do not allow 
themselves to be constructed in this way 
without the exact knowledge of the respective 
lengths of the edges and relationships of the 
angles of the surfaces. An exact knowledge of 
the polar-Archimedean solids has to be 
acquired along with the concept of polarity. In 
this way Eugéne Charles Catalan (1814–94) 
described them completely for the first time.

Fig. 6: Polar-Archimedean or Catalanian 
solids
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Two things can be recognised in both these 
examples of “concave” and “polar”—they 
demand the ability to imagine spatially more 
strongly than the descriptions of either Plato 
or Archimedes. This corresponds to the thesis 
presented at the outset, of the development of 
the ability to conceive and think. On the other 
hand, the contrary standpoints of the two 
examples show polar relationships. The 
convex and concave conceptions face each 
other as earlier and later discoveries, in the 
same way as the discoveries of the 
Archimedean and polar-Archimedean were 
discovered earlier and later.

2.4 Excursus on the history of architecture
In a similar way basilica and Greek temple 
face each other. The temple has its pillars 
outside and its walls inside, which with the 
basilica is reversed. 

Fig. 7: Temple and basilica: contrasting 
principles

Frank Teichmann (1937–2006) taking up a 
suggestion of Rudolf Steiner (1861–1925) 
researched this phenomenon in detail in a 
comprehensive 4-volume work, the details of 
which cannot be discussed here. Here these 
examples serve only to gain a view of the 
relationship of the observer to his/her object. 
With temple and basilica inner and outer 

change places.

3.EGYPTIAN AND WESTERN 
EUROPEAN STONE AGE

3.1 Cultural-historical aspects
Before comparing temple and basilica, 
Teichmann compares Western European 
Stone Age and ancient Egyptian culture. He 
concludes that both cultures, which existed at 
approximately the same time, distinguished 
themselves in their diversity, as it were 
systematically. The pyramid is distinguished 
by its perfect geometrical construction, which 
draws the attention towards itself (centre). 
The stone circle, constructed for the main part 
with roughly hewn stones, serves observation 
of the heavens. It only receives its meaning 
through its arrangement in the landscape and 
to the starry constellations, drawing the 
attention of the observer to the distance 
(periphery).

The polar relationship between pyramid and 
stone circle as examples for the basic tone of 
the respective culture touch on the different 
directions into which the observer is drawn—
with the pyramid to the inside, with the stone 
circle to the outside (these contrasts show 
many other aspects that cannot be discussed 
here; see Teichmann). It is worth noting here 
that the interior of the pyramid (centre), as 
well as the heavenly phenomena (periphery) 
remain unreachable for the observer.

With Teichmann, one can see the Greek 
temple is formed out of a well-balanced 
mixture of both elements of construction 
(pyramid and stone circle): the pillars are 
taken as if from the stone circle, and the inner 
sanctuary from the pyramid.
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Fig. 7: Stone circle, pyramid; temple

3.2 Carved stone balls
In the British Isles, mainly in Scotland, carved 
stone balls were found which are 
distinguished through rich geometrical 
ornamentation. The balls were probably made 
c. 2,000 years before Plato. The forms of 
these balls show relationships to the regular, 
and other polyhedra. They appear to be 
composed of several small balls, which 
represent the corners or the surfaces of the 
related polyhedra.

Fig. 9: Carved stone balls, Scotland, c. 2,500 
B.C.

These artifacts give the impression to the 
observer, as if the stonemason had not 
managed to complete the ball into a 
polyhedron. The forms appear 

as incomplete. The profusely carved 
amorphous ornamentation reinforces this 
impression. Similar to the placement of the 
stones, which points towards the periphery, 
the forces of form of the stone balls are not 
brought to completion in straight edges and 
flat surfaces.

3.3 Metatron’s cube
A further presentation of the regular solids 
arises out of the projection of the regular 
polyhedra along the threefold axes of 
symmetry into a pattern of a sixfold series of 
circles, or through an infolded construction of 
the edges of the polyhedra. For this, particular 
points connect with each other. This method, 
with which all regular polyhedra can be 
constructed as projections, is also called 
Metatron’s cube. The observer does not 
perceive a polyhedron, but only a projection. 
In its formal strictness, this presentation 
recalls the pyramids.

Fig. 10: Metatron’s cube

3.4 Polarities in comparing Egypt with the
Stone Age, and Greece with the 
Renaissance
In contrasting the representative buildings of 
Egypt with the Stone Age and Greece with 
the West, parallels can be drawn to the 
contrasting of Metatron’s cube with the stone 
balls, and the Platonic solids with the 
presentations of Leonardo and Dürer.

Neither with the stone balls nor with 
Metatron’s cube do we reach the polyhedra 
with straight edges, pointed corners and level 
surfaces. Both emphasise different aspects of 
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space, which on their own do not form a clear 
spatial structure. The stone balls emphasise 
the outer, the projections the centre. Only in 
the polyhedra of Plato and Archimedes do 
both meet to form a clear spatial structure.

This is the prerequisite for the laying hold of 
further thoughts in which opposites mutually 
depend, e.g. the polar relationships of the 
regular polyhedra to each other in the 
respective number of corners and surfaces, 
or the relationships of the Archimedean to the 
polar-Archimedean solids. 

4.METAMORPHOSES

4.1 Polar levels and their transitions
These relationships turn stage by stage 
into their opposite when a regular polyhedron, 
through depressing the corners and buckling 
the surfaces, step by step is changed via 
Archimedean (or polar-Archimedean) solids 
into its polar-opposite solid.

Fig. 11: Buckling and depressing regular 
polyhedra (hexahedron and octahedron)

4.2 Dynamic metamorphoses between poles
Every regular, even semi-regular solid can be 
changed into its polar opposite. First a simple 
observation. When a force moves towards a 
point, where the point offers no resistance, the 
force continues in the same direction beyond 
the point, leaving it as soon as it has reached 
it. 

Figur 12: A force of direction passing through 
a point

In a similar manner one can observe the 
surfaces of any polyhedron as formed 
by forces which are effective from outside, 

and the corners as the counter-force effective 
from inside. If the force increases equally 
from all sides, the polyheadron becomes first 
smaller and finally a point. If the forces 
continue undiminished in the same direction,
instead of forming surfaces from the outside 
they form corners from the inside. A 
polyhedron comes about which is the polar 
opposite of the initial polyhedron.

Fig. 13: Metamorphosis of directions of force 
in going through a point (hexahedron and 
octahedron)

The important thing with this example is the 
sudden change of the one thing into the other. 
This comes about through the dynamic of the 
whole process in going through the zero-
point. The concept of infinity in its smallest 
form, the point, here marks an essential 
turning point of metamorphosis.

In a similar manner one can think the 
transition of the temple to the basilica, or the 
change in imagining a (merely) convex to an 
(also) concave polyhedron.

5.INVERSION—TURNING INSIDE OUT

5.1 Paul Schatz
Paul Schatz (1898–1979) was one of the first 
to recognise the importance of the theme 
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Umstülpung, inversion, or more accurately, a
turning inside out. He researched it 
comprehensively as a dynamic method 
through which the infinitely small, 
rhythmically recurring, can be changed into 
the infinitely large—and vice versa. He 
demonstrated how space entire turns 
completely inside out, that is, its inner side 
turns outwards and vice versa.

5.2 Inversion of the cube and of space
First Schatz discovered that the cube as a 
(projective) complete polyhedron is able to be 
turned inside out, and later that the principle 
applies to every polyhedron. Through the 
model of Schatz’s cube, one can show very 
well the (projective) inversion of the entire 
space—the planes of the cube tip sideways 
through six mobile joints until they reach a 
level prior to reforming, this time to a hollow 
cube. The change has taken place from inside 
to outside. Through further development the 
cube returns to its original form, following a 
cyclical and rhythmical movement of 
inversion.

Fig. 14: Inversion of space through the 
example of a cube

5.3 Platonic inversion
All regular polyhedra can be inverted, that is, 
turned inside out. A special form of inversion 
was discovered by Immo (*1936), Franz 
(*1935) and Friedemann Sykora (*1961). In 

addition to the complete inversion of space 
it was discovered that all geometrical 
elements of a regular polyhedron can be 
turned inside out at the same time—corners,  
edges, surfaces and volume. Konrad 
Schneider (*1954), Wolfgang Maas (*1954) 
and Robert Byrnes (*1944) were involved in 
this research and made some discoveries. 
With the example of the invertible cube of 
Schneider, the above-described process is 
demonstrated. This inversion, with reference 
to the perfection of Platonic solids, is 
described as the Platonic inversion.

Fig. 15: Platonic inversion—invertible cube 
of Konrad Schneider

6 TECHNOLOGICAL APPLICATION 
AND USE

6.1 Linkages
Schatz’s cube can be technically described as 
a sixfold linkage, which possesses one degree 
of freedom. The mobility motion of this 
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linkage is consequently only possible in two 
directions—forwards and backwards.

Fig. 16: Sixfold linkage in the cube

As the basis for a technological application of 
the inversion, only such polyhedra-inversions 
are suitable. Klaus Ernhofer (*1962) found a 
total of twelve possibilities to invert regular 
polyhedra with a sixfold chain of joints. He 
also developed the prototype of a machine 
(pulsina) whose inversion-movements derive 
from the inversion of the dodecahedron.

6.2 Inversion—a new kinematic kind of 
movement
From the discovery of inversion, Paul Schatz 
found a new kinematic kind of movement, the 
inversion (translation and rotation are already 
known). This kind of movement is a looping, 
pulsing movement in space which, with 
processes of acceleration and deceleration, 
always rhythmically returns to its starting 
point. Technically this can be applied where 
rotating starting energy is transferred through 
a corresponding mechanism into inversion 
movement.

6.3 Turbula technology
With the turbula and similar machines 
(holdyna, inversina), a cylindrical container is 
inversively moved through two axes rotating 
in opposite directions. Through two mobile 
arms the rotating is translated into an inverse 
movement. It is used in the mixing of fluid 
and solid matter, e.g. paint and medicines.

Fig. 17: Turbula

6.4 Oloid and oloid technology
The form of the oloid can be directly gained 
out of the inversion of Schatz’s cube. It is 
similar to the windscreen-wiper which as a 
space-time surface creates a free surface on a 
windscreen for the view of the driver. The 
surface of the oloid is formed through the 
path taken by the diagonal of Schatz’s cube 
moving through space in an inversion-cycle. 
The start and transmission of the turbula and 
the oloid are in principle the same. In contrast 
to the turbula, the oloid moves the 
surrounding space. The oloid is used as a 
aerator over water-surfaces or as an agitator 
under the surface of water. Oloid technology 
is especially used in treating stagnant water, 
in sewage works, and in aquariums.

Fig. 18a: Oloid
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Fig. 18b: Oloid in use

6.5 Advantages in its use
Turbula technology as well as oloid 
technology have proved to be homogenous, 
thorough and non-destructive. The special 
efficiency (compared to rotational technical 
alternatives, c. 6/7 saving of energy is 
possible) of this technology is due to the 
special rhythmical manner of movement 
which is very similar to the movement of 
flowing water and that of fishes.

7 CONCLUSIONS

With the example of the various historical 
presentations it was shown in what manner 
perceptions and conceptions of space depend 
on the spatial relationship of the observer to 
his/her object. The more flexibly the observer 
thinks and imagines, the more comprehensive 
is his/her relationship. In the inversion, or 
turning inside out, the maximum of flexibility 
is connected with a geometrically strictly 
lawful and systematic sequence to change the 
standpoint and with it completely to lay hold 
of space in its infinite aspect. 

Looking at the development of the ability to 
understand space chronologically, as has been 
presented, it is possible to recognise in a 
historical development how inversion can be 
grasped out of the individual aspects of space 
and their metamorphoses. Furthermore, one 
can see that only inversion contains all the 
geometrical elements through which the 
whole of space can be taken hold.
That this knowledge is the starting point of a 
completely new technology based on the 
movement of inversion, emphasises the fact 
that conscious and reflective perception 

ultimately not only determines 
conceptualising and thinking but also action. 
The discovery of inversion is a very recent 
one in the geometrical field as well as the 
technological field. Consequently, we may 
look forward to future technological 
developments, and I would like to invite you 
to take part actively or passively in further 
research.

All the models, illustrations and machines 
mentioned in the text will be shown in a 
demonstration.

9



ACKNOWLEDGMENTS
Many thanks for the translation and helpful 
suggestions: Alan Stott, Jürgen Peters, 
Dr. Robert Byrnes. 

REFERENCES
1. Plato. Timaeus. 53C
2. Luca Pacioli. Divina proportione. 

Illustrationen von Leonardo da Vinci. 
1509. Reprint France 1988.

3. Albrecht Dürer. Unterweisung der 
Messung mit dem Zirkel und 
Richtscheidt. 1525. Reprint Nördlingen, 
2000.

4. Marshall, Dorothy N. Carved Stone Balls. 
Proceedings of the Society of Antiquaries 
of Scotland 108, Pps.4-72, 1983

5. Drunvalo Melchizedek. The Ancient 
Secret of the Flower of Life. 1994.

6. Teichmann, Frank: Der Mensch und sein 
Tempel. Vol. 1: Ägypten, Vol. 2: 
Griechenland, Vol. 3: Megalithkultur, 
1983, Vol. 4: Chartres. Stuttgart.

7. Schatz, Paul. Rhythmusforschung und 
Technik. Stuttgart, 1998.

8. Maas, Wolfgang und Sykora, Immo. 
Umstülpungsmodelle der Platonischen 
Körper. Berlin, 1993.

9. Ernhofer, Klaus und Maas, Wolfgang. 
Umstülpbare Modelle der Platonischen 
Körper. Dornach, 2000.

10. Adam, Paul und Wyss, Arnold. 
Platonische und Archimedische Körper. 
Bern und Stuttgart, 1994.

11. Arn, Walter: Auf zu den Sternen. 
Hölstein, 2000.

12. Ziegler, Renatus. Platonische Körper. 
Dornach, 2003.

13. Byrnes, Robert. Das Riegelmodell von 
Paul Schatz. Mensch und Architektur 60, 
Berlin, p 82, 2007.

ABOUT THE AUTHOR
Alexander Heinz has a practical approach 
to geometry by modelling and working in 
educational projects based on experience. 
His main interest are polyhedra and 
inversion phenomena. He cooperates with 
others e.g. Paul-Schatz-Stiftung, Basel, in 
developing didactical concepts that 
advocates practical experiences of 
mathematical laws by modelling with 
paper, woods and clay in an aesthetic way. 
He is a bookbinder. In his bookbindery he 
develops and produces movable geometric 
models and handcrafted books.

10




