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Abstract

We show that the decision question posed in the title can be answered with an
algorithm of time and space complexity O(n?), for a polygon of n vertices. We use
a theorem of Aleksandrov that says that if the edges of the polygon can be matched
in length so that the resulting complex is homeomorphic to a sphere, and such that
the “complete angle” at each vertex is no more than 27, then the implied folding
corresponds to a unique convex polytope. We check the Aleksandrov conditions via
dynamic programming. The algorithm has been implemented and tested.

1 Introduction

The polygon shown in Fig. la cannot fold edge-to-edge to a convex polytope despite being
composed of six squares that one might think could fold to a cube. The familiar “cross”
polygon in Fig. 1b can of course fold to a cube. The aim of this paper is to provide an
algorithm that can decide whether a polygon can fold to a polytope.

We take a polygon P to be a collection of vertices (vg, v1, ..., v,—1) in the plane, connected
by edges (eq, €1, ...,e,—1) With €, = v;v;41. We do not insist that our polygons be simple.
We only need the edges to be oriented consistently so that the interior angle «; at vertex
v; 1s well-defined and less than 27. We chose an orientation so that all indices increase
in counterclockwise order. All index arithmetic is mod n. The polygonal chain from wv;
counterclockwise to v; is denoted by P[i, j]. A polytope P is a convex polyhedron that is the
convex hull of a finite set of points in 3-space.

We assume a polygon is given by its edge lengths ¢; = |e;| and interior angles «; (which
can be computed from vertex coordinates). We prefer not to concern ourselves with the bit
complexity of the input, and will measure the input size with n, the number of lengths and
angles input. Our question is: When can a polygon fold to a polytope? Equivalently, could
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Figure 1: (a) A polygon that cannot fold to a cube; (b) An unfolding of a cube.

some polytope surface be sliced and unfolded to produce the given polygon? We provide an
O(n?) algorithm to answer this decision question.

We start by ruling out certain types of degeneracies: we insist that each vertex of the
polygon corresponds to a strictly convex vertex of the polytope, and that every vertex of
the polytope corresponds to some vertices of the polygon joined together. Thus vertex v, in
Fig. 1b must be present even though the interior angle oy = 7. These conditions disallow
vertices of the polygon folding to a point interior to a face of P. Such “flat foldings” will be
examined in Section 5.

2 Aleksandrov’s Theorem

Cauchy proved a fundamental theorem over a century ago: if two polytopes have the same
combinatorial structure, and the corresponding faces are congruent, then the polytopes are
congruent [Whi94, p. 147]. In our terms, Cauchy’s theorem requires knowing the fold (crease)
lines. Aleksandrov erased this dependence with a powerful extension of Cauchy’s theo-
rem [Ale58]. One formulation of his result is as follows [Bus58, Thm. 17.1, p. 128]:

Theorem 1 “A polyhedral metric with non-negative curvature on the sphere can be realized
as one, and up to motions only one, (possibly degenerate) polyhedron.”

A polyhedral metric [AZ67, p. 8] assigns to each point a neighborhood that is either isometric
to an open disk in E?%, or to the apex of a cone whose complete angle is less than 27. The
complete angle [Pog49, p. 15] of a vertex of a polytope is the sum of the incident face angles;
the complete angle at the apex of a cone is the natural analog.



One way to translate this theorem to a form more useful for our purposes is via Alek-
sandrov’s concept of a net: a collection of polygons whose edges are matched or identified
so that:

1. Each edge is matched with one of equal length.
2. The sum of the angles incident to each vertex is no more than 2x.
3. The resulting complex is homeomorphic to a sphere.

Any such net defines a polyhedral metric, and therefore corresponds to a unique polytope
(unique up to congruence). In our context his net is our single polygon. His theorem says
that we only need check the obvious local necessary conditions for folding: matching edge
lengths and achieving convex vertex angles. If these conditions hold, the polygon folds to a
unique polytope according to that matching. Although a “legal” matching (one producing
a net) results in a unique polytope, it is possible that there can be more than one legal
matching. Indeed, Shephard found a polygon with two distinct matchings, which fold to two
non-congruent polytopes [She75]. We will see examples of this phenomena in Section 5.

Aleksandrov’s theorem does not require that the edges of the net/polygon fold to edges
of the polytope. To reverse the viewpoint: the slicing that produces the polygon can cut
through face interiors. Initially we will insist that the slicing start and terminate at vertices
(but need not follow polytope edges), although his theorem covers a more general situation.

It should be admitted that for “generic” polytope unfoldings, the question we have posed
is easy to answer. Consider the polygon in Fig. 2. It was produced by unfolding the convex
hull of random points in a sphere. The random generation produced distinct polytope edge
lengths. Thus each edge of the polygon has only one possible mate: the only other one with
the same length. Checking Aleksandrov’s conditions then amounts to checking the angle
sum at the vertices of the unique gluing. The problem is more difficult when many edges
have the same length, and so there are many choices for edge matches. In the examples
in Fig. 1 (and Fig. 4 below), all edge lengths are identical. Naive search would explore an
exponential number of possible matches.

3 Dynamic Programming Formulation

The basic insight of our algorithm is that if e; is matched with e;, which we write as e;=e;,
then we have two smaller problems: folding P[i+1, 5] and P[j+1,:]. These two subproblems
are isolated from one another by the two matched edges. For if an edge in P[i+ 1, j] is glued
to an edge in P[5+ 1,1, any resulting surface will not be homeomorphic to a sphere. Certain
choices of initial edge matches lead to subproblems with no solution. Others lead to a
subproblem which can be solved but which is incompatible with the angle conditions at the
endpoints of e; and e;. And others lead to compatible, solvable subproblems, which result in
a folding. We design an algorithm based on dynamic programming, formulated as follows.
We write v;=v; to mean that these two vertices are identified. The key quantity associ-
ated with the matching v;=v; is anin(i, 7). We first provide an informal definition. Define
Qmin(t,7) = oo if there is no “legal” folding of the chain P[z, j]. If there is at least one legal



Figure 2: An unfolding of a randomly-generated convex polytope. The polytope was gener-

ated as in [O’R94, p. 155] and the unfolding produced according to [NF93].



folding of the chain, a,,in(2,7) is the minimum face angle incident to v; = v; contributed by
the chain, minimum over all legal foldings of P[i,j]. A formal definition is as follows.

D1. For |j — ] odd, amin(z,j) = oo.
D2. For i = j, amin(i,7) = 0.

D3. For |j —i| > 2 and even, let k have different parity from ¢, and ¢ < k < j — 1. amin(i,7)
is the minimum over all such k of the “extra” angle ¢; at v; = v; resulting from a
folding that matches e;=ey. If ¢; # {;, then ¢, = co. Otherwise this match creates two
subproblems (see Fig. 3):

Figure 3: The match v;=v; creates two subproblems for every possible gluing e;=ej.

1. viz1=vg. If 1 + 1 = k, this subproblem is vacuous and ¢ is determined by the
second subproblem. Assume then that i4+1 # k. If a1 +ap+amin(t+1, k) > 27,
the gluing e;=e; is not possible, so ¢, = oco. Otherwise ¢ is determined by the
second subproblem:

2. vp41=v;. The extra angleis 0if k41 = j, and €, = ag41+amin(k+1,7) otherwise.

D1 of this definition simply reflects the fact that between any two matched vertices must lie
an even number of edges, because the edges are matched in pairs. D2 says that a vertex can
always match with itself (which happens when it is the endpoint of a slice on the polytope
surface), resulting in no extra angle glued to v; = v;.

The heart of the procedure is D3, which we illustrate with the cube unfolding in Fig. 1b,
computing amin(1,5), corresponding to matching vy=vs. There are two values of k within
the relevant range: £k = 2 and k = 4. The first corresponds to matching e;=e;. This creates
two subproblems, va=vs and v3=vs. The first is possible (D1) and so we turn to the second,

which yields an extra angle of €3 = ag + @min(3,5) = 270° + 0 = 270°. The k£ = 4 case



corresponds to the match e;=e4, which creates the two subproblems vy,=v, and vs=vs. The
first is legal since az + a4 + @min(2,4) = 180° 4+ 90° + 0 = 270° < 360°. The second yields
es = 0 (by DI). Finally, ain(1,5) = min{es, €4} = 0, meaning that there is a way to fold
the chain P[1,5] so that no extra angle is matched to v; = vs.

It is clear that a,in(,7) can be computed for all ¢ and j by dynamic programming:
values for |; — ¢| = d depend on values of a,,;, for strictly smaller index separation. Thus
the entire table of «,,;, values can be computed in the order: d =0,2,4,...,n — 2.

With this table in hand, the question of whether or not P can fold may be answered by
seeing if ey can be glued to some other edge €,,. This is answered by examining the two
subproblems exactly as in D3 of the a,,;, definition! v=v,, and v,,,1=vg, and then verifying
that the angle conditions are satisfied at the endpoints of eg = €,,:

a1 + @y + amin(l,m) < 2x
Omt1 + ag + amin(m + 17 O) < 27

It should be clear that the entire algorithm takes O(n?) time, O(n) time for all ..,
entries separated by |j — ¢| = d. Storing the table requires quadratic space.

4 Octahedron Example

We will show the complete dynamic programming table for one example. Consider the
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Figure 4: An unfolding of an octahedron.

polygon in Fig. 4, which is an unfolding of an octahedron. It has n = 10 vertices, whose
angles (in degrees) are as follows:

In fact one could extend the table to d = n to capture this case.



? 0 1 213 | 4] 5 6 7 18 9
o; || 240 | 120 | 60 | 240 | 60 | 240 | 60 | 240 | 60 | 120

All edge lengths are identical, ¢; = 1. After initializing o, (2,5) = 0 for |5 — 7| € {0, 2},
we compute the table for |j — ¢| = 4 using D3:

(5,7) || (0.4 | (1,5) | (2,6) | (3,7) | (4,8) | (5,9) | (6,0) | (7,1) | (8,2) | (9,3)
Qin(i,7) ] 60 | 0 60 [0 [60 [ 0 [ 60 [ 0 [ 0 [ 0

We will explain the computation of the first entry of this table, a,,:,(0,4) = 60°. D3
explores two values of k, £k = 1,3, corresponding to the two ways to fold the four edges in
P[0,4]. The first glues eg=e;, which forces e;=e3. Both of these matches are legal foldings.
This folding brings v, to match vy = vy, and so the extra angle is ¢ = ay = 60°. The
second way to fold the four edges is to glue eg=e3 and e;=ey. The first subproblem of D3
is v1=vs, which results in the angle oy + a3 + amin(1,3) = 120° + 240° + 0 = 360° which
is not a legal folding, as the angle is not strictly less than 27. Thus €3 = oo. Finally,
Omin(0,4) = min{e, €3} = 60°.

The tables for |7 — i| € {6,8} follow:

(5,7) || (0,6) | (1,7) | (2,8) | (3,9) | (4,0) | (5,1) | (6,2) | (7,3) | (8,4) | (9,)
anin(,7) | 120 [0 [120 [ 0 [120 [ 120 [ 60 | 0 | 60 | 120

(5,7) || (0,8) | (1,9) | (2,0) | 3,1) | (4,2) | (5,3) | (6,4) | (7,5) | (8,6) | (9,7)
Qpin(,7) | 180 | O | 180 | 120 | 120 | O | 120 | 0 | 120 | 120

Notice that no entry of any of the tables is 0o, indicating that all the implied subfoldings
are legal. This is of course not always the case.

We come now to the final set of tests: finding a match for e;. We will step through two
matches, m =5 and m = 9.

1. m = 5: eg=e5. The two subproblems are v;=vs and v¢=vy. The first results in this
angle calculation:

a1 + as + amin(1,5) = 120° 4+ 240° 4+ 0 = 360°
And thus eg cannot be glued to es.

2. m = 9: ¢g=eg. The two subproblems are vi=vg and vo=vg. The second is trivially
legal; the first induces this angle calculation:

a1 + ag + amin(1,9) = 120° 4+ 120° 4+ 0 = 240°

This represents the only legal folding of the polygon, whose complete set of edge
matchings is:

{eo=eg ,e1=¢€g , €3=€3 , €4=¢€5 , cg=€7}.



5 Flat Folding

We have interpreted the angle condition to demand strictly less than 27 at each vertex.
Aleksandrov’s theorem holds when the complete angle at each vertex is no more than 27.
Permitting equality with 27 can be interpreted as follows: every true (strictly convex) vertex
of the polytope P maps to one or more vertices of the polygon P, but some vertices of the
polygon may not correspond to any vertex of the polytope: rather they “fold flat” to interior
points of a polytope face or edge. We illustrate with two examples, the first in detail, the
second briefly.

Permitting flat foldings in the above sense leads to no less than five distinct ways to fold
the “cross” unfolding of the cube shown in Fig. 1b, producing these five polytopes:

1. The cube.

2. A flat, doubly-covered quadrilateral, a degenerate polytope permitted by Aleksandrov’s
theorem:

{60563 ,61=€3 ,€4=€13 ,E5=C€g ,E7=E€13 ,E€8=C€11 ,E9=C]Q }

The vertices of the quadrilateral are vy = vy, v,, vg, and vyg.

3. A tetrahedron:
{60561 ,E2=€3 ,€4=€13 ,E5=€¢g ,E7=E€13 ,E€E8=C€11 ,E9g=C]Q }

In this matching, only four vertices have a complete angle strictly less than 27: vy,
v3, vg, and v1g. The folding to a tetrahedron is shown in Fig. 5. Note, for example,
that the set of vertices {vs, vz, v13} join in the interior of one of the tetrahedron’s faces:
as + ar + ajz = 90° + 90° + 180° = 360°; and the pair of vertices {vg,v11} join at the
interior of an edge: ag + a1 = 270° 4+ 90° = 360°;

V3
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Figure 5: Refolding the cube unfolding of Fig. 1b to a tetrahedron.



4. A pentahedron:

{60563 , €1=€3 ,€4=C€9 , €5=€g , €g=€7 , €10=€13 , €11=C€12 }
5. An octahedron:

{60563 , €1=€3 ,€4=C€7 ,€5=C€g , €g=€g , €10=€13 , €11=C€12 }

We have thus established the curious fact that a cube may be unfolded and then refolded to
several distinct polytopes.

Similarly, the polygon of Fig. la can fold to several flat, doubly-covered polytopes: two
different quadrilaterals, a pentagon, a hexagon; as well as to several nondegenerate polytopes:
a pentahedron, a hexahedron, and an octahedron.

6 Future Work

It is natural to next ask for an algorithm to construct a three-dimensional representation
of the unique polytope resulting from a folding. This seems difficult. Perhaps a more
approachable problem is to remove the restriction that matches must glue whole edges:
Aleksandrov’s theorem countenances identifying arbitrary subparts of the polygon boundary.
We delimited the choices by vertices only for the convenience of our algorithm.
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