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Abstract 
 

In this paper, we further Doris Schattschneider�s work on kaleidocycles, which 
are three-dimensional rings made from chains of 2n regular tetrahedra attached at 
edges.  We show that the symmetry group of a kaleidocycle is 22 ZZDn ⊕⊕ .  In 
addition, we extend kaleidocycles to cubeocycles (pronounced �cube-o-cycles�), 
three-dimensional rings made from chains of 2n cubes attached at antipodal 
vertices, and show that the symmetry group of a cubeocycle is 32 DZDn ⊕⊕ . 

 
1.  Introduction 
 
  In everyday life, we find various examples of uses and implementations of the concept of 
symmetry.  When we visit museums, whether they are art or history museums, we can appreciate 
the symmetries in a painting, a sculpture, the architecture, or the fossils of ancient animals and 
plants.  The human eye is naturally drawn to objects that appear to be symmetric because 
symmetric objects and figures are perceived to be beautiful or appealing.  Even the human body 
has a number of symmetries that people believe to be pleasing and attractive.  However, the 
concept of symmetry is not so easily defined because of the numerous notions of symmetries that 
people possess.  Two popular notions of symmetry are �well-balanced� or �well-proportioned� 
and �bilateral� symmetry; see [5] for further discussion of the concept of symmetry. 
   
  This concept has been the focus of many questions in the intersection of mathematics and 
art.  For example, take wallpaper, which by definition has at least a translational symmetry.  Can 
we find other symmetries in wallpapers?  What ones and how do they arise?  We refer the reader 
to [1] for more information on wallpapers.  Closely connected with the subject of wallpaper is 
the work of the artist M.C. Escher and many papers have been written about his study of 
symmetry.  For a more in depth discussion of these symmetries, see [4]. 
   
  In this paper, we take an algebraic approach to symmetries and focus our attention on the 
symmetries that arise in three-dimensional objects called kaleidocycles and cubeocycles.  We 
present the definitions of these terms in later sections. We can translate the geometrical problem 
of finding the symmetries of an object into an algebraic problem of finding the elements that 
compose the symmetry group of that object.  To begin our endeavor we define some algebraic 
concepts that will guide us through our description of the groups.   
   
  Algebraically, we define a symmetry in terms of a function with the special characteristic 
of distance preservation. 
 
Definition 1.1: Let f be a function from nR  to nR .  Then, f is an isometry if it preserves distance; 
that is, ))(),((),( bfafdbad =  for any a and b in nR . 
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Example 1.2: Let xxf −=)(  be a function on R.  Then, babad −=),( .  Also, 

))(),(( bfafd ba +−=  baba −=−−= )(1 .  Since, ))(),((),( bfafdbad = , )(xf  is an 
isometry. 
 
  We are ready to define the term �symmetry� as it will be used throughout this paper. 
 
Definition 1.3: Let F be a subset of nR .  Then the symmetries of F are the isometries of F onto F. 
 
  In other words, the symmetries of F are going to be all the functions that preserve the 
shape and size of the figure within the same configuration. 
 

Example 1.4: A regular octagon has a number of symmetries.  It has eight rotations obtained by 
rotating the figure in counter-clockwise 45º increments about the center of the octagon.  Also, 
there are eight reflections, where half of the axes of reflection are obtained by joining opposite 
vertices and the other half by joining midpoints of opposite sides.  If we allow r to be one 
counter-clockwise rotation by 45º and allow f to be a reflection along one specified axis of the 
octagon, then every possible symmetry can be obtained through a composition of powers of r 
and f.  In Figure 1.5, we show the octagon (labeled e), one rotation of 45º (labeled r), a vertical 
reflection (denoted by f), and the composition of one rotation of 45º and one vertical reflection 
(labeled fr). 
 
     
   
 
 
            e                 r           f                  fr 
 

Figure 1.5. 
 
  Up to this point we have seen how we can define the actions on a polygon in terms of 
functions, now we go one step further.  When we are describing the symmetries of a specific 
figure or object, the set of symmetries of the object always form a group.  Depending on the type 
of symmetries that we find, this group may be a specific case of one of the following. 
 
Definition 1.6:  Let nπ  be a regular n-gon.  The dihedral group of nπ  is the set of all of the 
symmetries of nπ ; we denote the dihedral group by Dn. 
 
Example 1.7:  The set of all symmetries of the regular octagon described in Example 1.5 forms 
the group 8D .  The group { }frfrfrfrfrfrrffrrrrrrreD 765432765432

8 ,,,,,,,,,,,,,,,=  
which is the group generated by r and f, subject to the relations efr == 28  and 7rfrf = . 
 
Definition 1.8:  Let G be a group.  G is cyclic if there exists an a in G such that for any b in G, 

nab = .  We call a the generator of G. 
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  It is known that a finite cyclic group with n elements is isomorphic to nZ .   For an 
example of a cyclic group, consider the set of rotations of 8D .  The set of rotations of 8D  forms 
a group under the operation of composition.  The group of rotations is a cyclic group because r is 
the generator since any element in the group of rotations can be obtained as a power of r.  
Besides the more well-known dihedral and cyclic groups, we will need three other groups to 
characterize the symmetry groups of the objects we will encounter in this paper. 
 
Definition 1.9:  We define the symmetric group of degree n, denoted nS , to be the set of all 
permutations of {1, 2, �, n}. 
 
Definition 1.10: We call s in nS  an even permutation if s can be factored into an even number of 
two-cycles.  The alternating group of degree n, denoted nA , is the group of even permutations in 

nS . 
 
Definition 1.11: The Klein-4 group, denoted K4, is a subgroup of nS  for 4≥n  containing the 
permutations (1), (12), (34), and (12)(34).  We can also think of K4 as isomorphic to a group 
containing the following symmetries: the identity, one 180° rotation, and two perpendicular 
reflections. 
 
Example 1.12:  The symmetric group 4S  is the group of all permutations of the four elements: 
1, 2, 3, and 4.  Thus, the permutation )123(=σ  is an element of 4S .  In addition, σ  is an even 
permutation because it can be expressed as an even number of 2-cycles as follows )12)(13(=σ .  
Thus, σ  is also an element of 4A . 
 
Definition 1.13:  Let G and H be groups.  The direct sum is defined to be  

{ }HhGghgHG ∈∈=⊕ ,),(  under coordinate-wise operation.  Note that elements may be 
viewed as gh.  
 
  We have defined all of the algebraic terms needed in this paper.  More definitions will 
arise as we move through the characterization of different three-dimensional objects.  We begin 
with an object that most people have seen before: a tetrahedron.  Then, we will move through the 
characterizations of the symmetry groups discovered when two or more tetrahedra are attached 
in various ways until we characterize the symmetry group of a kaleidocycle. 
 
2. Tetrahedra 
 
  A regular tetrahedron is a three-dimensional object composed of four copies of an 
equilateral triangle such that the vertices of three triangles intersect in a single vertex; see Figure 
2.1. 

 
 
 

 
Figure 2.1. 
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Notice that a regular tetrahedron has a number of symmetries.  One symmetry is the identity 
rotation.  The nontrivial rotations of a regular tetrahedron are determined by different axes of 
rotation: four axes are through a vertex and the center of the opposite triangle (each such axis 
yields two rotations of 120° increments); three axes are through midpoints of two opposite edges 
(each such axis yields one rotation of 180°).   See page 105 of [2] for pictures of these rotational 
axes.  We have shown that the set of rotational symmetries of the tetrahedron is isomorphic to 
the group 4A , which has order 12.  Besides rotations, a regular tetrahedron also has reflections.  
The planes of reflection contain one edge and bisect the tetrahedron.  A regular tetrahedron has 
six planes of reflection.  Writing the symmetries obtained through rotation and reflection as 
permutations and composing the various permutations produce permutations that are neither 
reflections nor rotations, which are additional symmetries of the tetrahedron.  Specifically, 
composing three reflections yields six additional symmetries of a regular tetrahedron.  These 
additional symmetries are neither rotations nor reflections because they require an inversion of 
the vertices of the tetrahedron which cannot be obtained by rotating or reflecting the tetrahedron; 
see Figure 2.2. 
 
     
 
           
 
 

 
Figure 2.2. 

 
The object formed by the symmetry in Figure 2.2 is the composition of a reflection along the axis 
containing vertices 3 and 4 and the rotation through the axis though the midpoint of the line 
containing 1 and 4 and the line containing 2 and 3; however, it could not be obtained by simply 
rotating or reflecting the tetrahedron.  The set of symmetries formed by the rotations, reflections, 
and those that are neither form the group 4S , which has order 24. 
   
  The objects obtained by attaching two regular tetrahedra in various ways also have a 
number of symmetries.  Two regular tetrahedra attached on one face form an object with two 
antipodal vertices with an equatorial equilateral triangle; see Figure 2.4.  This object has an axis 
of rotation through the two antipodal vertices (which produces two rotations of 120° increments).  
This object has three other axes of rotation through the equator that are each given by a non-
antipodal vertex and the midpoint of the opposite edge (each rotates the object 180°).  Thus, 
considering the identity as a rotation, the object has six rotations.  The object also has four planes 
of reflection that are each given by three vertices and bisect the object.  Two additional 
symmetries that are neither rotations nor reflections are obtained by composing the permutations 
of the second type of rotations and the reflections.  We show, below, that the set of symmetries 
of two regular tetrahedra attached on a face is isomorphic to the group 23 ZD ⊕ . 
 
Lemma 2.3: The group G of symmetries of the two regular tetrahedra attached on one face is 
isomorphic to 23 ZD ⊕ . 
 
Proof:  Let G be the group of symmetries of two regular tetrahedra attached on one face as seen 
in Figure 2.4.   
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Figure 2.4. 
 
Then the elements of G, in permutation form, are (1), (234), (243), (15)(34), (15)(24), (15)(23), 
(24), (23), (34), (15), (243)(15), and (234)(15).  Define a function ϕ  from G to 23 ZD ⊕ that 
maps α  to )0,(α  and maps )15(α  to )1,(α .  We assume that (15) is not a factor of α  so the 
elements that correspond to α  are (1), (234), (243), (24), (23), and (34).  The other elements 
correspond to )15(α .  We must show that ϕ  is one-to-one and onto.  Assume )()( βϕαϕ = .  
Then, )0,()0,( βα = .  Thus, βα = .  If we assume that ))15(())15(( βϕαϕ = , then βα = .  
However, ))15(()( βϕαϕ ≠  because α  will be mapped to )0,(α  and )15(β  will be mapped to 

)1,(β  and βα ≠ .  Let ),( nδ be an element of 23 ZD ⊕ .  If n = 0, then αδ = , and if 1=n , then 
)15(αδ = .  Thus, ϕ  is one-to-one and onto.   

 
  Now, we must show that )()()( τϕσϕστϕ =  for all τσ , in G.  We have three cases: 
 
Case 1: βτασ == ,  
 )0,()()( αβαβϕστϕ ==  and )0,()0,)(0,()()()()( αββαβϕαϕτϕσϕ ===  
 
Case 2: βτασ == ),15(  
 )1,())15(()( αββαϕστϕ ==  and )1,()0,)(1,()())15(()()( αββαβϕαϕτϕσϕ ===  
 
Case 3: )15(),15( βτασ ==  
 )0,())15()15(()( αββαϕστϕ == and )0,()1,)(1,())15(())15(()()( αββαβϕαϕτϕσϕ ===  

 
Thus, G is isomorphic to 23 ZD ⊕ .■ 
 

  The object formed by attaching two regular tetrahedra at one vertex such that the edges at 
the two ends form three planes and the centers of the two tetrahedra are on one line through the 
attached vertex also has the same number of symmetries as the previous object; see Figure 2.5. 
 
     
 
 
      
 

 
 
 

Figure 2.5. 
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One axis of rotation, denoted by l, contains the centers of the two base equilateral triangles and 
the vertex at which the two tetrahedra are attached, and this axis produces two rotations of 120° 
increments.   Three other axes of rotation are lines perpendicular to l.  These axes of rotation 
produce three rotations of 180°.  One plane of reflection contains these three axes of rotation and 
cuts the object into the two tetrahedra.  Three other planes of reflection each contain the vertex at 
which the two tetrahedra are attached and two other vertices such that the plane bisects both 
tetrahedra.  Composing the rotations of the first type and the reflections of the first type yields 
two additional symmetries that are neither reflections nor rotations.  Thus, this object also has 
twelve symmetries including the identity, and by an argument similar to that of Lemma 2.3, the 
group of symmetries of two regular tetrahedra attached at a vertex such that the edges of the two 
tetrahedra form three planes is isomorphic to 23 ZD ⊕ .  Moreover, we show that the group D6 is 
isomorphic to 23 ZD ⊕ .  
  
Lemma 2.6: The group D6 is isomorphic to 23 ZD ⊕ . 
 
Proof: Define a function ϕ  from D6 to 23 ZD ⊕ that maps r to )1,(R  and f to )1,(F  where r is a 
rotation of 60º in D6, f is a vertical flip in D6,  R is a rotation of 120º in D3, and F is a vertical flip 
in D3.  To prove this lemma, we must show that )()()( qknmqknm frfrfrfr ϕϕϕ =  for all r, f in 
D6.  The map ϕ  is one-to-one and onto by inspection�it is a direct correspondence on 
generators. 
 
  Then, we have three cases to show the operation preservation. 
 
Case 1: n = 0, q = 0 
 ))2(mod,()()( kmRrrr kmkmkm +== ++ϕϕ  
 ))2(mod,())2(mod,(),)(,()()( kmRkmRRkRmRrr kmkmkmkm +=+== +ϕϕ  
 
Case 2: n = 1, q = 0 
 ))2(mod1,()()( ++== ++ kmFRfrfrr kmkmkm ϕϕ  
 ))2(mod1,())2(mod1,()1,)(,()()( ++=++=+= + kmFRkmFRRkFRmRfrr kmkmkmkm ϕϕ  
 
Case 3: n = 1, q = 1 
 ))2(mod5,()())(())(()( 5551 kmRrrrfrfrffrr kmkmkmkmkm +==== ++− ϕϕϕϕ
 ))2(mod2,())2(mod1,))(2(mod1,()()( ++=++= kmFFRRkFRmFRfrfr kmkmkm ϕϕ  
   ))2(mod,())2(mod,)(())2(mod,)( 221 kmRkmRRkmFRFR kmkmkm +=+=+= +−  
  
  Now, we must show that )3(mod25 kmkm +=+ and that )2(mod5 kmkm +=+ .  In D3, 

kmkkm 5)3(mod32 +=++  because the addition of 3k to the left side will only add zero to the 
left side because 3k(mod 3) equals zero.  In addition, kmkm 5)2(mod +=+  because adding 4k 
to the left side will add zero to the left side because 4k(mod 2) equals zero. 
   
  Thus, D6 is isomorphic to 23 ZD ⊕ .■ 
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  Thus, the group of symmetries of two regular tetrahedra attached on a face and the group 
of symmetries of two regular tetrahedra attached at a vertex so that the edges of the two 
tetrahedra form three planes are both isomorphic to D6. 
 
  The object formed by attaching two tetrahedra at one vertex as before, except ensuring 
that the edges of the two triangles on the end of the object form no planes, has symmetries; see 
Figure 2.7.   
 
     
 
     
 
 
 

 
Figure 2.7. 

 
One axis of rotation is through the centers of the two triangles on the ends of the object and the 
vertex at which the two tetrahedra are attached, and this axis produces two rotations of 120° 
increments.  Three other axes of rotation are through the vertex at which the two tetrahedra are 
attached and perpendicular to the other axis of rotation, where each axis produces one rotation of 
180°.  Therefore, including the identity as a rotation, this object has six rotations.  This object has 
no reflections or symmetries that are neither rotations nor reflections, so the set of symmetries of 
this object is Z6. 
 
  Another way to attach two tetrahedra is along an edge; see Figure 2.8.   
   
   
 

 
 
 
 

Figure 2.8. 
 
This object yields eight symmetries.  One axis of rotation is from the midpoints of the two outer 
edges of the object to the midpoint of the connected edge where the axis produces one rotation of 
180°.  Another axis of 180° rotation is given by the connecting edge.  One plane of reflection is 
along the connecting edge and dividing the object into two tetrahedra.  Another plane of 
reflection is given by the four vertices of the outer edges.  In addition, another plane of reflection 
contains the midpoints of the outer edges of the object and the connected edge.  By composing 
the permutations of the reflections, we obtain two symmetries that are neither rotations nor 
reflections.  Therefore, we show below that this object has eight symmetries and its group of 
symmetries is isomorphic to 24 ZK ⊕ .   
 
  The next step in finding the symmetries of attached tetrahedra is to consider the various 
ways to attach three tetrahedra such that the object produces symmetries.  Attaching three 
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tetrahedra at a vertex such that the three tetrahedra are connected at two edges produces an object 
that has symmetries; see Figure 2.10.   
 
 
     
  
 
 

 
Figure 2.10. 

The symmetries of the object consist of one plane of reflection through the connected and middle 
vertex of the center tetrahedron and the identity.  Similarly, another object of three tetrahedra 
that has symmetries is obtained by attaching an additional tetrahedron at the center vertex of 
Figure 2.5 such that six vertices lie in a single plane and the line containing the center of the 
additional tetrahedron is perpendicular to the line containing the centers of the other two 
tetrahedra; see Figure 2.11.  
  
     
 
     
 
   
 

Figure 2.11. 
 
This object yields two symmetries: one plane of reflection through the attached vertex and the 
midpoint and one vertex of the additional tetrahedra and the identity. 
 
  While there are many more ways to attach three tetrahedra, two particularly interesting 
ways that have more than two symmetries exist.  One way to attach three tetrahedra is to attach 
two tetrahedra on a face and then attach another tetrahedron at one of the vertices of the two 
attached tetrahedra such that no other edges or faces of the two attached tetrahedra touch the 
additional tetrahedron and the face opposite to the attached vertex is parallel to the attached face; 
see Figure 2.12.   
 
 
 
 
     
 
       
 
 
 
 

Figure 2.12. 
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This object has one axis of rotation through the attached vertex and the vertex on the end of the 
object (which yields two rotations of 120° increments), the identity, and three planes of reflection 
through the four vertices that are coplanar.  Thus, the object has six symmetries which form the 
group D3.  The other interesting way to attach three regular tetrahedra is to attach three tetrahedra 
along one edge so that one face of each tetrahedron is attached to one face of one other 
tetrahedron, see Figure 2.13. 
 
 
     
 
 

 
 
 
 
 

Figure 2.13. 
 
This object has one axis of rotation through the midpoint of the top edge and the midpoint of the 
connected edge (the axis rotates the object 180°).  This object has two planes of reflection 
through the two centers of the object that are perpendicular to each other (each plane yields one 
symmetry).  Thus, since the object has two perpendicular reflections and a 180° rotation, the set 
of symmetries of the object is the group K4. 
 
3. Kaleidocycles 
 
  The next question, after discovering how three tetrahedra can be attached so that the 
object has symmetries, is how four regular tetrahedra can be attached.  The most interesting 
possibility to attempt is that four tetrahedra could be attached in a row (or, rather, in a cycle) 
along edges so that the first and the fourth also connect along an edge, or in a kaleidocycle.  For a 
more in-depth discussion of kaleidocycles, refer to [3]. 
 
Definition 3.1: A kaleidocycle is a three-dimensional ring made from a chain of regular 
tetrahedra attached at edges. 
 
  Folding a piece of paper with a grid of equilateral triangles, as seen in Figure 3.2, by the 
following directions will form a kaleidocycle.   
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Figure 3.2. 
 
  By folding the vertical lines face-to-face and folding back-to-back on all diagonal lines, 
the pattern will begin to take shape.  Curling the bottom triangles around to meet the tabs at the 
top of the pattern and gluing these top and bottom tabs together exactly will form a chain of eight 
linked tetrahedra.  Bringing the ends together and gluing the two ends of the chain together will 
form the kaleidocycle. 
 
  However, this object can0not be constructed with four tetrahedra because attaching two 
tetrahedra along an edge creates an object with a central angle of 120° and attaching two of these 
objects only creates an object with a central angle of 240°.  An object created with tetrahedra in a 
cycle must contain at least six tetrahedra in order to produce an object with the needed central 
angle of 360° to get the first tetrahedron to be attached to the sixth.   
 
  We can do what is described above for eight regular tetrahedra so that eight regular 
tetrahedra are attached in a cycle so that the first and the eighth are also connected along an edge; 
the resulting object is a square kaleidocycle; see Figure 3.3.   
 

 
 

Figure 3.3. 
 
The grid used above in Figure 3.2 is the grid that we use to assist us in finding the symmetries of 
the square kaleidocycle.  For our purposes, we numbered each triangle in the grid and noted the 
symmetry by the permutation of triangles.  The numbers on the triangles correspond to the faces 
that we use in the cycle notation of the symmetries.  The square kaleidocycle has a number of 
interesting symmetries including rotations, reflections, a writhe (pushing the internal vertices in 
and pulling the external vertices up to obtain the same object), and a number of others which are 
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neither rotations or reflections.  The square kaleidocycle has one axis of rotation that is a vertical 
line through the center hole of the object (yielding four rotations of 90° increments).  The four 
other rotations are determined by the axes through opposite edges (each such axis yields one 
rotation of 180° where the entire kaleidocycle flips over).  Four of the planes of reflection are 
given by planes containing opposite edges (each plane yields one symmetry).  In addition, the 
square kaleidocycle has a horizontal reflection through a plane containing all of the attached 
edges.  Rotating the kaleidocycle and then horizontally reflecting the object produces three 
elements that are neither rotations nor reflections.  These rotations, reflections, the three �other� 
symmetries along with the identity produce 16 symmetries of the object.  We will show in 
Lemma 3.5 that these 16 symmetries form the group 24 ZD ⊕ .  First, we need a computational 
tool. 
 
Lemma 3.4: If q is a horizontal reflection, α  is a rotation, and β  is a flip of a kaleidocycle, 

αβαββα == ))(()()( qqqq .  
 
Proof: If we rotate a kaleidocycle and then reflect it horizontally, it is the same as a horizontal 
reflection followed by a rotation.  If we flip a kaleidocycle and then reflect it horizontally, it is 
the same as a horizontal reflection followed by a flip.  Thus, the horizontal reflections commute, 
and αββα =)()( qq .■ 
Lemma 3.5: The group of previously described 16 symmetries of the square kaleidocycle is 
isomorphic to the group 24 ZD ⊕ . 
 
Proof: Let G be the group of 16 symmetries of the square kaleidocycle that were previously 
described.  In permutation notation, these elements are  provided in Appendix A.  Define a 
function ϕ  from these elements to 24 ZD ⊕  that maps α  to )0,(α  and maps 

31) (29, 27) (25, 23) (21, 19) (17, 15) (13, 11) (9, 7) (5, 3) (1,α  to )1,(α .  The specific numbers 
arise from the numbers in the grid of Figure 5.2.  For example, (1, 3) would move face 1 to face 
3 and face 3 to face 1.  The proof of Lemma 2.3 with q = (1, 3) (5, 7) (9, 11) (13, 15) (17, 19) 
(21, 23) (25, 27) (29, 31) (q is a horizontal reflection) in the place of (15) shows that ϕ  is one-to-
one and onto.   
 
  From there, we must show that )()()( τϕσϕστϕ =  for all τσ , in G.  Again, we have the 
same three cases as the proof of Lemma 2.3 with the substitution of q as (15).  The first two 
cases correspond to case 1 and case 2 of Lemma 2.3.   
 
Case 3: (q)ασ = , )(qβτ = .    

)0,())()(()( αββαϕστϕ == qq by Lemma 3.4 and ))(())(()()( qq βϕαϕτϕσϕ =  
  )0,()1,)(1,( αββα ==  
 
  Therefore, G is isomorphic to 24 ZD ⊕ .■ 
 
  The square kaleidocycle also has a writhing symmetry where the object is turned in on 
itself.  Composing these 16 elements with the writhing symmetry (denoted in permutation 
notation as (1, 3) (2, 4) (5, 7) (6, 8) (9, 11) (10, 12) (13, 15) (14, 16) (17, 19) (18, 20) (21, 23) 
(22, 24) (25, 27) (26, 28) (29, 31) (30, 32) from the grid of Figure 5.2) of the square kaleidocycle 
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produces another 16 symmetries of the object providing a total of 32 symmetries for the square 
kaleidocycle.  Thus, the symmetry group for the symmetries of the square kaleidocycle is 

224 ZZD ⊕⊕ . 
 
  We can find the subgroups of the square kaleidocycle by coloring the kaleidocycle in 
such a way that certain symmetries of the square kaleidocycle are not present.  Numerous ways 
to color the kaleidocycles to find the subgroups exist, and the ones we use here are not the only 
ways to color a square kaleidocycle to find its subgroups.  We use the grids to color the 
kaleidocycles because we can easily see where each face can go when we observe a colored grid 
instead of the colored object.  Using the grid in Figure 3.2 we must first understand that face 1 
can only move to odd-numbered faces.  Consequently, even-numbered faces can only move to 
even-numbered faces.  First, we can color the three same faces of each tetrahedron in the 
kaleidocycle to form a subgroup of order 16; see Figure 3.6.  Understand that if we constructed 
this kaleidocycle, the faces that have lines would be fully colored, but for our purposes, we do 
not color the entire face because we need to see the grid lines. 
 

     
 

Figure 3.6. 
 
In the grid of Figure 3.6, the triangles in the middle row of triangles can not move to the bottom 
row of triangles.  So, we need to know how many other triangles one of the triangles in the top or 
third row can move to without moving the triangles in the middle row to the triangles in the 
bottom row.  By observing what the symmetries of this colored kaleidocycle are, we find that the 
group formed by the symmetries of this object is 24 ZD ⊕ .  The group 24 ZD ⊕ is a subgroup of 

224 ZZD ⊕⊕ .  If we color only two faces of each tetrahedron, as in Figure 3.7, we find a 
subgroup of order 8 because one pair of colored triangles can only move to another pair of 
colored triangles.   
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Figure 3.7. 
 
Specifically, we find the subgroup D4.  If we color only the same face of every other tetrahedron, 
as in Figure 3.8, we find a subgroup of order 4 because one colored triangle may only move to 
another colored triangle. 
 

     
 

Figure 3.8. 
 
The subgroup of order 4 in this case is the group of rotations of the square kaleidocycle, Z4.  By 
coloring only two faces in the entire square kaleidocycle, specifically, the same face of opposite 
tetrahedra as in Figure 3.9, we find a subgroup of order 2 because the two colored triangles may 
switch places. 
 

     
 

Figure 3.9. 
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Finally, we can color any one face of any tetrahedron in the kaleidocycle to find the trivial 
subgroup of the identity, as seen in Figure 3.10. 
 

     
 

Figure 3.10. 
 
  A triangular kaleidocycle is a kaleidocycle with six regular tetrahedra.  The hexagonal 
kaleidocycle can be constructed, but it does not have writhing symmetries because no hole exists 
in the middle of the object and when attempting to writhe the object, the six tetrahedra crash into 
each other.  As seen in Figure 3.11, attaching six regular tetrahedra so that they can writhe will 
not create a kaleidocycle. 
 

 
 

Figure 3.11. 
   
  An n-gonal kaleidocycle is a kaleidocycle composed of 2n regular tetrahedra.  Half of the 
symmetries of the n-gonal kaleidocycle include 4n elements consisting of  n elements obtained 
by rotating the object itself in n

°360  increments and the identity, n elements obtained by flips 
along n axes through two opposite edges, and 2n elements found by composing the rotations and 
flips with the horizontal reflection of the object.  The compositions of the rotations and the flips 
with the horizontal reflection produce other reflections of the object.  We will show, below, that 
the rotations and the flips develop nD , and the rotations, flips, and the compositions form 

2ZDn ⊕ . 
 
Lemma 3.12: The group of rotations, flips, and the compositions of these elements with the 
horizontal reflection of an n-gonal kaleidocycle is isomorphic to 2ZDn ⊕ . 
 
Proof:  Let G be the group of rotations, flips, and the compositions of these elements with the 
horizontal reflection of an n-gonal kaleidocycle.  Let the horizontal reflection 



   

 15 

)18,38)(58,78)...(7,5)(3,1( −−−− nnnn  be equal to q.  Define a function ϕ  from G to 2ZDn ⊕  
where α  is mapped to )0,(α and )(qα is mapped to )1,(α .  To prove that the two groups are 
isomorphic, we must show )()()( τϕσϕστϕ =  for all σ  and τ  in G.  First, we must show that ϕ  
is both one-to-one and onto.  Assume )()( βϕαϕ = .  Then, )0,()0,( βα = .  Thus, βα = .  If we 
assume that ))(())(( qq βϕαϕ = , then βα = .  However, ))(()( qβϕαϕ ≠  because α  will be 
mapped to )0,(α  and )15(β  will be mapped to )1,(β  and βα ≠ .  Let ),( kδ  be an element of 

2ZDn ⊕ .  If k = 0, then αδ = , and if k = 1, then )(qαδ = .   
 
  Now, to prove the isomorphism we have three cases:  
 
Case 1: βτασ == ,  
 )0,()()( αβαβϕστϕ ==  and )0,()0,)(0,()()()()( αββαβϕαϕτϕσϕ ===  
 
Case 2: βτασ == ),(q  
 )1,())(()( αββαϕστϕ == q  and )1,()0,)(1,()())(()()( αββαβϕαϕτϕσϕ === q  
 
Case 3: )(),( qq βτασ ==  
 )0,())()(()( αββαϕστϕ == qq by Lemma 3.4, and ))(())(()()( qq βϕαϕτϕσϕ =  
  )0,()1,)(1,( αββα ==  
 
  Thus, G is isomorphic to 2ZDn ⊕ .■ 
 
Theorem 3.13:  The group of all of the symmetries of the n-gonal kaleidocycle, denoted Kaln , is  

22 ZZDn ⊕⊕ . 
 
Proof:  As shown in Lemma 3.12, the group of rotations, flips, and the compositions of these 
elements with the horizontal reflection of an n-gonal kaleidocycle is isomorphic to 2ZDn ⊕ .  
Then, composing these 4n elements with the writhe, denoted here by 

)8,28)(18,38)(48,68)...(8,6)(7,5)(4,2)(3,1( nnnnnnw −−−−−= .  Composing the rotations, flips, 
and the compositions of rotations and flips with the writhe produces another 4n elements, or a 
copy of 2ZDn ⊕ .  Thus, Kaln ≈ 22 ZZDn ⊕⊕  and can be written as  
Kaln =  FwwFfFFfrFFrwrrwwffwrfrfewFfrwFfr nn ========== − ,,,,,,,,, 1222  

where r is one rotation of the object n
°360 , f is the vertical flip, F is the horizontal reflection, 

and w is the writhe.■ 
 
  One interesting note is that if we put a half-twist in a string of regular tetrahedra before 
attaching the two ends of the string to make the string of tetrahedra into a Möbius strip, we find 
some unusual symmetries.  Besides the identity, the Möbius strip can be rotated in units of 2 
tetrahedra along the center line of the Möbius strip.  Thus, the symmetry group of the 
kaleidocycle with a Möbius twist is isomorphic to Zn.   
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  Now, we move from viewing tetrahedra in various ways to viewing cubes in various 
ways.   
 
4.  Cubes 
 
  A cube is a regular solid with six congruent square faces as seen in Figure 4.1. 
 
 
      
 
 

 
Figure 4.1 

 
The cube has many interesting symmetries.  Three axes of rotation of the cube are through the 
centers of two opposite squares (each axis yields three rotations of 90° increments).  Four other 
axes of rotation of the cube are through two antipodal vertices (each axis produces two rotations 
of 120° increments), and opposite edges provide another six axes of rotation (each axis bears one 
rotation of 180°).  These 13 axes of rotation along with the identity produce 24 symmetries of the 
cube.  The group of rotations of the cube form 4S .  Composing these 24 elements with the 
element )'4,4)('3,3)('2,2)('1,1(  where 1� is the antipodal vertex of 1 produces another copy of the 
group 4S  for a total of 48 symmetries of the cube.  Thus, we show that the symmetry group of 
the cube is 24 ZS ⊕ . 
 
Lemma 4.2: The group of symmetries of the cube is isomorphic to 24 ZS ⊕ . 
 
Proof: Let G be the group of symmetries of the cube.  Let )'4,4)('3,3)('2,2)('1,1(=q , then q is in 
G.  From here, the proof is the same as the proof of Lemma 3.12.  Thus, G is isomorphic to 

24 ZS ⊕ .■ 
 
  As with tetrahedra, we want to explore the symmetry groups of two cubes arranged in 
various formats before we explore the symmetry groups of cubes arranged in strings like 
kaleidocycles.  We will begin with two cubes attached on one face; see Figure 4.3. 
 
 
 
     
 
 
      
 
 
 

Figure 4.3. 
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Along with the identity, the object has two types of axes of rotation: one through the centers of 
the two faces farthest from each other (the axis produces three rotations of 90° increments), two 
through the midpoints of opposite edges of the face at which the cubes are attached (each axis 
produces one 180° rotation), and two through opposite vertices of the face at which the cubes are 
attached (which yields one 180° rotation).  Besides the eight rotational symmetries of the object, 
it has five planes of reflection.  One plane of reflection contains the face at which the two cubes 
are attached.  Two planes of reflection contain three diagonals of the horizontal faces.  The 
object also has two perpendicular planes of reflection that bisects the object vertically.  
Composing the reflection of the face at which the two cubes are attached and the rotations 
through the centers of the two farthest faces produces three symmetries that are neither rotations 
or reflections.  We will show that two cubes attached on a face has 16 symmetries and forms the 
group 24 ZD ⊕ . 
 
Lemma 4.4: The group of symmetries of two cubes attached on one face is isomorphic to the 
group 24 ZD ⊕ . 
 
Proof: The proof is similar to the proof of Lemma 2.3 with D4 instead of D3.■ 
 
  Attaching two cubes along an edge such that no faces of the cubes touch yields fewer 
symmetries than two cubes attached at a face, but it will be important as we move into 
determining the symmetry groups of cubeocycles.  This object has two cubes attached along an 
edge such that the angles between the two cubes are 90°; see Figure 4.5. 
 
 
 
 
     
 
 

Figure 4.5. 
 
The following four symmetries of this object form the group K4: the identity, one 180° rotation 
about the axis containing the edge at which the two cubes are attached, denoted by l, one 180° 
rotation about the axis perpendicular to l and touches no other part of the object (this rotation 
flips the object over so that the two edges farthest apart switch places), and one 180° rotation 
about the axis that is perpendicular to l and bisects the two edges that are farthest apart.  The 
other symmetries of this object include the reflection across the plane that contains l, the 
reflection across the plane that contains l and the two edges farthest apart, and reflection across 
the plane that contains the midpoint of l.  Composing the second plane of reflection with the first 
axis of rotation provides one additional symmetry that is neither a rotation or a reflection.  The 
three symmetries that are categorized as reflections and the additional symmetry form the group 
K4.  We will show that the symmetry group of two cubes attached at one edge is 24 ZK ⊕ .   
 
Lemma 4.6: The symmetry group of two cubes attached at one edge is isomorphic to 24 ZK ⊕ . 
 
  The natural next step is to explore the ways that three cubes can be attached so that the 
resultant has symmetry.  Three cubes can be attached in a number of ways; some of these ways 
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have symmetries and some of these ways have trivial symmetry groups.  Because exploring the 
symmetry groups of three attached cubes will not assist us in our attempt to characterize the 
symmetry group of cubeocycles, we will only mention some ways that three cubes can be 
attached.  Three cubes can be attached at faces such that three cubes are on top of each other or 
at faces such that the object has an L-shape; see Figure 4.7.   
 
 
 
 
 
 
 
 

Figure 4.7. 
 

They can also be attached along one edge (see Figure 4.8 as an overhead view of the object), at 
opposite edges (see Figure 4.9), or along equivalent edges of the cubes such that no faces of the 
three cubes touch (see Figure 4.10 as an overhead view of the object). 
 
 
 
 
 
 
 

Figure 4.8. 
 
 

 
 
 
 
 
 
 

Figure 4.9. 
 
 
 
 
 
 

Figure 4.10. 
 
Three cubes can be attached at antipodal vertices to create a short string of cubes (see Figure 
4.11) and at one vertex in a number of different ways.   
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Figure 4.11. 
 
All of these ways to attach three cubes can be altered slightly to create certain symmetries.   
 
  Just like with tetrahedra, we need to know if four cubes can be attached in any way to 
form a cycle.  However, unlike tetrahedra, four cubes can be attached along one edge and four 
faces.  This does create a small cycle of cubes, but the cycle does not provide us with writhing 
symmetries.  Thus, our next step is to determine how cubes can be arranged in cycles, and then 
to discover the symmetry groups of these objects. 
 
5.  Cubeocycles 
 
  Before we define cubeocyles, we first need to discuss how cubes can be attached in 
cycles.  Cubes can be attached at opposite edges such that an overhead view of the object would 
look like Figure 5.1. 
 
 
 
 

 
 
 
 

Figure 5.1 
 
This object has a number of symmetries including the identity and five rotations of 60° 
increments around the axis through the center of the hole of the object.  The object also has three 
rotations of 180° through the axes containing the midpoints of opposite edges and three rotations 
of 180° about the axes containing the midpoints of the unattached edges of opposite cubes.  
These 12 symmetries form the group D6; in fact, it is the same group of symmetries as a 
hexagon.  In addition, the object has three planes of reflection containing opposite connected 
edges and three planes of reflection containing the unattached edges.  The object also has a plane 
of reflection that contains the midpoints of each vertical edge of a cube; we shall call this 
reflection the horizontal reflection.  Composing the horizontal reflection with the rotations of the 
object produces five additional symmetries.  The symmetries provided by reflections and 
compositions that are neither rotations nor reflections form another copy of D6.  Unlike 
kaleidocycles, this object has no writhing symmetries because of its construction.  In order for 
the object to writhe, the object would have to be able to have the form seen in Figure 5.2.   
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Figure 5.2 
 
Since the object in Figure 5.2 will never be able to be built into a cycle when trying to attach the 
two outer edges so that the attached edges stay in the horizontal plane, the object in Figure 5.1 
has no writhing symmetries.  Thus, the symmetry group of this object is 26 ZD ⊕ .  We will 
prove this in the general case. 
 
Lemma 5.3: The group of symmetries of 2n cubes attached on opposite edges such that they are 
in a cycle is isomorphic to 22 ZD n ⊕ . 
Proof: Let G be the group of symmetries of 2n cubes attached on opposite edges.  The object 
will have 2n rotations of n2

360°  increments.  In addition, the object will have n rotations of 

180º through the axes containing the midpoints of opposite edges and n rotations of 180° about 
the axes containing the midpoints of the unattached edges of opposite cubes.  This group of 4n 
elements forms the group nD2 .  In addition, the object has n planes of reflection containing 
opposite connected edges and n planes of reflection containing the unattached edges.  The object 
also has a horizontal reflection.  Composing the horizontal reflection with the rotations of the 
object produces 12 −n  additional symmetries.  The symmetries provided by reflections and 
compositions that are neither rotations nor reflections form another copy of nD2 .   
 
  All we have to do to show that there are no other symmetries is to determine the number 
of faces to which one face of a cube can go.  If we focus on a top face, call it y, it can go to any 
other face that is on top or on bottom.  Thus, there are 2n symmetries.  In addition, every time y 
goes to another top or bottom face, there are only two other ways which the other faces can be 
arranged around y.  This is true because the outer faces cannot move to the inside faces because 
the object does not have any writhing symmetries.  Also, if one of the inside faces, denote it face 
1, moves to another inside face, denote face 2, then the outside face adjacent to face 1 will move 
to the outside face adjacent to face 2.  Thus, the group only has 4n elements.  Since we have 
found all 4n elements, we know that we have all of the symmetries.   
 
  Thus, G isomorphic to 22 ZD n ⊕ .■ 
 
Definition 5.4: A cubeocycle is a three-dimensional ring made from a chain of an even number 
of cubes attached at antipodal vertices; see Figure 5.5. 
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Figure 5.5. 

  Cubeocycles are another way to attach cubes in a cycle such that the object formed has a 
number of interesting symmetries.  In addition, cubeocycles are similar to kaleidocycles in that 
they have a writhing symmetry.  In our construction, we used wire to thread though the cubes at 
antipodal vertices to keep the object stable.  Our first goal in attempting to find the symmetry 
group is to discover the number of places that each face can go and how many different ways the 
other faces can be arranged around that face.  Unlike kaleidocycles, one specified face can go to 
any other face in two different ways; thus, the symmetry group must correspond to a larger group 
than that of the kaleidocycle. 
 
  The cubeocycle with eight cubes has the identity and three rotations of 90º increments as 
well as four rotations of 180º about the axes containing opposite vertices.  Then, composing 
these eight elements with the horizontal reflection produces another eight elements for a total of 
16 elements.  Composing these 16 elements with the four reflections through opposite vertices at 
which cubes are attached yields another 16 elements.  Finally, composing these 32 elements with 
the two writhes produces 64 symmetries; thus, the group has 96 symmetries. 
 
Theorem 5.6: Some of the symmetries of a cubeocycle with 2n cubes  is isomorphic to the group 

2ZDn ⊕ . 
 
Proof:  Let G be the group of symmetries of the cubeocycle with 2n cubes.  The cubeocycle will 
have the identity and 1−n  rotations of n2

360°  increments about the axis through the center of 
the hole of the cubeocycle (denote these rotations as r) and n axes of rotation through opposite 
vertices at which cubes are attached where each axis yields a rotation of 180º (denote these 
rotations as f).  These 2n elements compose the group nD .  Then, composing these 2n elements 
with the reflection through the vertical plane of reflection through two opposite vertices at which 
cubes are attached provides another copy of nD , which forms the group 2ZDn ⊕ .■ 
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  Notice that the object also has a horizontal reflection (denote it as F) as well as two 
writhing symmetries (denote it as w) that will be discussed in the next lemma. 
 
Lemma 5.7: If F and w are the horizontal reflection and writhe of a cubeocycle, then 2wFwF =  
and the group generated by F and w is isomorphic to the 
group 223 ,, wFwFeFwFwP ==== . 
 
Proof: Let the numbers on the faces of the cube in Figure 5.8 correspond to the numbers we will 
use in the permutations of this proof. 
 
 
 
 
 

 
 
 
 

Figure 5.8. 
We can isolate our attention to just one cube since F and w do not permute the cubes and they 
just rearrange the faces of the cubes.  Then, )263)(145(=w  and )63)(15(=F .  Then, 

)236)(154()63)(15)(263)(145)(63)(15( ==FwF .  Since )236)(154()263)(145)(263)(145(2 ==w , 
2)236)(154( wFwF == .  The group generated by F and w is 223 ,, wFwFeFwFwP ==== .  

Obviously, P is isomorphic to 3D .■ 
 
Corollary 5.9: The group of all of the symmetries  of a cubeocycle with 2n cubes, denoted Cubn , 
is isomorphic to the group 32 DZDn ⊕⊕ . 
 
Proof: Let G be the group of symmetries of a cubeocycle with 2n cubes.  By Theorem 5.6, we 
know that the rotations and the compositions of the vertical reflection form a group that is 
isomorphic to 2ZDn ⊕ .  Composing any of the elements in the group 2ZDn ⊕  with any product 
of kj wF  where j can equal 0 or 1 and k can equal 0, 1, or 2 (where F and w come from Lemma 
5.7) produces 24n elements, which forms a group that is isomorphic to 32 DZDn ⊕⊕  that has 
24n elements.   
 
  Now we must show that there are no other symmetries of a cubeocycle.  Similar to 
Lemma 5.3, we need to determine the number of faces to which one face can go.  If we focus on 
one face, call it y, we need to know the number of other faces to which it can move.  First, y can 
go to every other face once, so since there are 2n cubes and each cube has 6 faces, y can move to 
12n other faces.  Then, the other faces around y can be arranged in only 2 ways.  This is true 
because the six faces that come together at an attached vertex must come together in the same 
way since the two cubes are attached in a certain manner.  For example, if y is fixed and the two 
adjacent faces, call them x and z, that are attached to the same vertex (that attaches two cubes) as 
y, then x and z can be arranged in two different ways around y.  In addition, the faces that are 
opposite to y, x, and z must follow the same movements on their cube as y, x, and z do on the 
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cube to which they belong.  Thus, there are no other symmetries of a cubeocycle besides the 24n 
that were already described.   
 
  Thus, G is isomorphic to 32 DZDn ⊕⊕ .■ 
   
  Thus, Cubn ≈ 32 DZDn ⊕⊕  and can be written as 

21222 ,,,,,,,, wFwFFffFrwwrrFFrrfrfewFfrwFfrCub nn
n ========== − . 

 
6.  Future Research  
 

 We have discovered the symmetry groups of a number of objects including kaleidocycles 
and cubeocycles.  Furthermore, we also know the symmetry groups of octahedrons attached at 
antipodal vertices such that they are in a cycle because octahedrons are the duals of cubes.  
Therefore, the symmetry group of a cycle composed of dodecahedrons is still needed.  If one 
discovers the symmetry group of dodecahedrons in a cycle, then one will also know the 
symmetry group of icosahedrons attached in a cycle because a dodecahedron is the dual of an 
isocahedron.   
 
  Another interesting question to investigate is the symmetry group of a cycle formed by 
attaching an alternating chain of tetrahedra and cubes.  After discovering the symmetry groups of 
kaleidocycles and cubeocycles, a conjecture would be that the symmetry group of the alternating 
cycle would be a subgroup of the symmetry group of the kaleidocycles and cubeocycles.  
Moreover, other solids, both regular and non-regular, can be attached in a cycle and one can find 
the symmetry groups of the objects formed.  While there will be fewer symmetries of a cycle 
composed of non-regular objects, there is the possibility that one can discover an interesting 
symmetry group of these objects. 
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Appendix A: Half of the elements of Kal4.  The numbers come from the grid of Figure 3.2. 
 
(1) 
 

)32,24,16,8)(31,23,15,7)(30,22,14,6)(29,21,13,5)(28,20,12,4)(27,19,11,3)(26,18,10,2)(25,17,9,1(  
 

)32,16)(31,15)(30,14)(29,13)(28,12)(27,11)(26,10)(25,9)(24,8)(23,7)(22,6)(21,5)(20,4)(19,3)(18,2)(17,1(
 

)16,24,32,8)(15,23,31,7)(14,22,30,6)(13,21,29,5)(12,20,28,4)(11,19,27,3)(10,18,26,2)(9,17,25,1(  
 

)20,16)(17,15)(18,14)(19,13)(24,12)(21,11)(22,10)(23,9)(28,8)(25,7)(26,6)(27,5)(32,4)(29,3)(30,2)(31,1(
 

)28,24)(25,23)(26,22)(27,21)(32,20)(29,19)(30,18)(31,17)(12,8)(9,7)(10,6)(11,5)(16,4)(13,3)(14,2)(15,1(
 

)32,28)(29,27)(30,26)(31,25)(16,12)(13,11)(14,10)(15,9)(20,8)(17,7)(18,6)(19,5)(24,4)(21,3)(22,2)(23,1(
 

)24,20)(21,19)(22,18)(23,17)(28,16)(25,15)(26,14)(27,13)(32,12)(29,11)(30,10)(31,9)(8,4)(5,3)(6,2)(7,1(
 

31) (29, 27) (25, 23) (21, 19) (17, 15) (13, 11) (9, 7) (5, 3) (1,  
 

32) 24, 16, (8, 29) 23, 13, (7, 30) 22, 14, (6, 31) 21, 15, (5, 28) 20, 12, (4, 25) 19, 9, (3, 26) 18, 10, (2, 27) 17, 11, (1,
 

32) (16, 29) (15, 30) (14, 31) (13, 28) (12, 25) (11, 26) (10, 27) (9, 24) (8, 21) (7, 22) (6, 23) (5, 20) (4, 17) (3, 18) (2, 19) (1,
 

16) 24, 32, (8, 13) 23, 29, (7, 14) 22, 30, (6, 15) 21, 31, (5, 12) 20, 28, (4, 9) 19, 25, (3, 10) 18, 26, (2, 11) 17, 27, (1,
  

20) (16, 19) (15, 18) (14, 17) (13, 24) (12, 23) (11, 22) (10, 21) (9, 28) (8, 27) (7, 26) (6, 25) (5, 32) (4, 31) (3, 30) (2, 29) (1,  
 

28) (24, 27) (23, 26) (22, 25) (21, 32) (20, 31) (19, 30) (18, 29) (17, 12) (8, 11) (7, 10) (6, 9) (5, 16) (4, 15) (3, 14) (2, 13) (1,
 

32) (28, 31) (27, 30) (26, 29) (25, 16) (12, 15) (11, 14) (10, 13) (9, 20) (8, 19) (7, 18) (6, 17) (5, 24) (4, 23) (3, 22) (2, 21) (1,
 

24) (20, 23) (19, 22) (18, 21) (17, 28) (16, 27) (15, 26) (14, 25) (13, 32) (12, 31) (11, 30) (10, 29) (9, 8) (4, 7) (3, 6) (2, 5) (1,
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