Classification of the homographies in conjugacy classes

by Georges LION - University of New-Caledonia

The homographies h are defined in $\mathbb{C} \cup \{\infty\}$ by $z \mapsto \frac{az+b}{cz+d} = Z$ and $z \mapsto \frac{a\overline{z}+b}{c\overline{z}+d} = Z'$ with $ad-bc \neq 0$.

 $\frac{-d}{c} \ (\text{resp. } \frac{-\overline{d}}{\overline{c}}) \mapsto \infty \ \text{ and } \ \infty \mapsto \frac{a}{c} \quad (\text{if } c=0 \text{ then } \infty \text{ is fixed point } : \infty \mapsto \infty)$

They build a group H which is generated by the inversions with positive power and the reflexions. The homographies composed of an even (resp. odd) number of inversions with positive power or reflexions form the sub-group H⁺. (resp. the set H⁻) and $H = H^+ \cup H^-$

The most important properties are :

- preservation of angles (orientation is preserved by $h \in H^+$ and changed by $h \in H^-$)
- preservation of the set {lines, circles}
- $[Z_{1}, Z_{2}, Z_{3}, Z_{4}] = \frac{Z_{3} Z_{1}}{Z_{3} Z_{2}} \div \frac{Z_{4} Z_{1}}{Z_{4} Z_{2}}$ is preserved (resp. conjugated) by $h \in H^{+}$ (resp. $h \in H^{-}$)
- only the reflexions and inversions with positive power, both in H⁻, have more than two fixed points

Below a classification of the homographies in conjugacy classes : every homography belongs to one and only one class. The class containing φ is $H_{\varphi}=\{h^{-1}\circ\varphi\circ h, h\in H\}$; $H_{1d}=\{Id\}$.

	generator	classes – properties	fixed points	invariant sets
Н+	central symmetry Z=-z	one class which contains $Z=z_{0}^{}+\frac{\lambda}{z-z_{0}} \lambda \in \mathbb{C}^{*}, \ z_{0}^{} \leftrightarrow \infty$ involutive	two : ω_1 and ω_2	two orthogonal pencils defined by ω_1 and ω_2 (base and limit points)
	rotation Z=e ^{iθ.} z θ≠kπ	classes indexed by θ (elliptic)	two : ω_{1} and ω_{2}	Poncelet's pencil (limit points ω_1 and ω_2)
	homothecy Z=r⋅z r∈ℝ*, r ≠1	classes indexed by k (hyperbolic)	two : ω_{1} and ω_{2}	pencil with base points ω_1 and ω_2
	direct similitude $Z = \lambda \cdot z$ $\lambda \in \mathbb{C}^*, \lambda \notin \mathbb{R}, \lambda \neq 1$ (homothecy \circ rotation, same centre)	classes indexed by λ (loxodromic)	two : ω_1 and ω_2	None
	translation Z=z+1	one class (parabolic)	one : ω	pencil with contact point $\boldsymbol{\omega}$
н.	reflexion $Z'=\overline{z}$	one class which contains the inversions with positive power involutive	line or circle Γ	all lines and circles \perp to Γ
	inversion $Z' = \frac{-1}{\overline{z}}$ (power<0) (inversion power>0 \circ centr. symmetry, same centre)	one class : the inversions with negative power involutive	none	one circle Γ and all circles going through two opposite points of Γ (and z and Z')
	inverse similitude $Z'=r \cdot \overline{z}$ $r \in \mathbb{R}^+$, $r \notin \{0;1\}$ (homothecy \circ reflexion, centre on the axis)	classes indexed by r	two : ω_1 and ω_2	two, \perp and going through $\omega_{\!1}$ and $\omega_{\!2a}$
	glide Z '= z+1 (reflexion ∘ translation, along the same line)	one class	one : ω	one line or circle going through ω
	$Z' = \frac{e^{i\theta}}{\overline{z}} \theta \neq k\pi$ (inversion \circ rotation, same centre)	classes indexed by $\boldsymbol{\theta}$	none	one line or circle