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Abstract 
 

By constructing large, attractive polytope models, students or a general audience are connected with the beauty of 
mathematics in a hands-on manner. Four-dimensional geometry provides engaging challenges to think about while 
working in a team to build a physically impressive, sculptural result. I have led many workshops of this sort with 
Zometool materials and report on one event in detail. A family of related structures and mathematical ideas that can 
be taught informally at such an event are also presented. 

 
 

1. Introduction 
 

Over the past eight years, I have organized many events where participants work with me to assemble 
geometric sculptures. I call these events “barn raisings” after the traditional New England events in which 
a community assembles the framework of a barn. Most people, I believe, have a natural feeling for pattern 
and form that I call the geometric aesthetic. [7] A participatory sculpture activity provides an informal 
education in mathematics which appeals to this feeling in an entertaining, hands-on manner, attractive 
even to those who may feel threatened by traditional presentations of mathematics. Examples of various 
sculpture barn raisings I have led with different designs and materials are described in references [8, 9, 
10, 11] and on my web pages. [4] 
 
This paper describes barn raisings in which the structures we build are three-dimensional projections of 
certain four-dimensional polytopes and the material used is a plastic building set called Zometool. [29] 
Figure 1 shows a close-up of one example, described in detail below in Section 3. It is about 6.5 feet in 
diameter, constructed from 10800 components. While many polytope models could be made, fifteen 
relatives of the 120-cell, described below in Section 4, are very natural for the material. They range in 
complexity from a few hundred parts to over twenty thousand parts, so an appropriate one may be chosen 
for the number and ability of the participants.  
 
There is a long history—from the ancient Greeks through the European Renaissance to modern art—of 
incorporating polyhedra in fine art. [3] Twentieth century artists have in some cases been inspired or 
enriched by knowledge of four-dimensional polytopes. [15] Mathematicians trained to visualize higher 
dimensional polytopes often find aspects of their symmetry or structure to be beautiful, but find this 
difficult to communicate to non-mathematicians. So I am happy to be able to provide a direct way for the 
public to see some of the beauty of 4D objects, in the form of models of their 3D shadows. 
 



 
Figure 1. Author and Zometool polytope model. Figure 2. Truncated icosahedron projected to 2D.

 
2. Polytopes 

 
This section collects mathematical ideas that I present casually in a workshop, as relevant parts of the 
model are being built. The term polytope generalizes polygons and polyhedra to n-dimensional (n-D) 
space. Segments are 1D polytopes. Polygons are 2D polytopes. Polyhedra are 3D polytopes. 
Mathematicians also study and make models of polytopes from 4D and higher-dimensional spaces. The 
boundary components of n-D polytopes are (n-1)-D polytopes. There are no physical 4D polytopes; we 
live in a 3D universe and can not construct physical 4D objects. However, it is important to see that ideal 
3D geometric objects such as spheres and cubes also do not exist physically in our universe, only 
approximations to them exist. But this does not stop us from studying their properties. We derive 
properties of ideal mathematical objects and find ways to model and understand them. Projections provide 
one way to study ideal 4D objects.  
 
A 3D object held in sunlight casts a 2D shadow, a projection one dimension lower. Figure 2 illustrates 
this with a shadow of the edges of a truncated icosahedron, better known as the form of a soccer ball (in 
the US) or football (in Europe). Our visual systems can deal with two artifacts of this projection: (1) 
foreshortening causes the regular pentagons and hexagons of the 3D original to appear compressed in 2D; 
and (2) the front and back of the shadow overlay, giving a kind of “Necker cube effect”, e.g., we might 
see either of the two central pentagons in Figure 2 as the front. Except for the outer rim, all of Figure 2 is 
“double covered”. Analogously, we can calculate the 3D object that is the one-dimension-lower shadow 
of an envisioned four-dimensional object. The two types of artifacts mentioned above must be considered 
when interpreting these projections: (1) foreshortening results in 3D parts that appear compressed in 3D 
even though they derive from regular components in 4D; and (2) for the polytope projections considered 
here, there will be no “Necker cube effect” because the front and back shadows exactly overlap. But we 
must understand each part of the projection (except the outermost rim) to be a double coverage, 
representing two distinct parts of the original.  
 
The truncated icosahedron implied by Figure 2 is an example of a “uniform polyhedron,” meaning each 
face is regular and each vertex is equivalent. At each vertex of a soccer ball, one regular pentagon and 
two regular hexagons meet. The term “Archimedean” is sometimes used to describe such polyhedra. The 
120-cell is a uniform 4D polytope consisting of 120 regular dodecahedra, four at each vertex, three 
around each edge. It is the simplest member of a family of fifteen uniform 4D polytopes related to each 
other by “expansion” (separating components) and/or “truncation” (slicing off vertices). Alicia Boole 
Stott, in the early twentieth century, was the first to mathematically describe many members of the 120-
cell family. [22, 24] Various people have made polytopes projection models using e.g., cardboard, or wire 



and thread [13, 19] or computer graphics [19, 27] or solid freeform fabrication [12]. More recently, it has 
been possible to construct even the most complex models from this family using Zometool. 
 
Zometool was designed around 1970 by the architect Steve Baer for purposes such as dome models. 
However, it incorporates lengths and angles that are useful for many other structures. [14] The parts fit 
together quickly and easily by friction, with no tools. So they are suitable for group construction projects 
with participants of all ages. I have found them ideal for polytope barn raisings. 
 

 
 

Figure 3. Start of Construction Figure 4. Truncated Icosahedron Modules 
 

3. A Modern-Day Sangaku at Stony Brook University 
 
The polytope construction event described in this section took place at Stony Brook University, April 24, 
2006. With announcements to the entire campus community, I promoted it as an interdisciplinary activity 
and exhibit, blending art, mathematics, computer science, and an aspect of traditional Asian culture. 
Sangaku (also written san gaku) is a Japanese tradition of celebrating geometrical beauty, popular during 
the Edo period (1603-1867) by members of all social classes. The traditional sangaku is a shaped wooden 
tablet on which a geometric problem or theorem is written with colorful paint. The tablet was displayed in 
a temple or shrine as an offering, as a puzzle for others to think over and understand, and as a way for the 
creator to show off the geometric discovery. Many are so beautiful that they are considered works of art. 
Although most sangaku are lost, almost nine hundred survive, scattered all throughout Japan. [23] 
 
I proposed to create a modern-day celebration of geometric beauty, in the tradition of sangaku, by leading 
members of the Stony Brook community in a large colorful geometric construction. Our temple or shrine-
like environment for displaying the result was the Charles Wang center, which provides a serene 
atmosphere for people to contemplate the beauty of the geometric form. Although we updated to a three-
dimensional construction from the traditional two-dimensional tablet, its content, like many sangaku, 
contains numerous nested and tangent circles and spheres.  
 
In Figure 3, participants are assembling various modules at the start of construction of a “Cantitruncated 
600-cell”. As far as I know, this was a world-premiere event. Some of the required 10800 Zometool parts 
are on the tables. The complete structure requires 3660 nodes and 7140 struts. Specifically, 1440 short 
red, 1440, medium red, 2400 medium yellow, and 1860 medium blue struts are needed. Parts counts for 
planning this and related polytope models are discussed below.  
 
The components of a 3D polyhedron are 2D faces, e.g., a truncated icosahedron consists of twelve regular 
pentagons and twenty regular hexagons, which meet at edges. Analogously, one dimension up, a 4D 



polytope consists of 3D “cells” which meet at their faces. Our polytope contains three types of cells: 120 
truncated icosahedra (TI), 600 truncated octahedra (TO), and 720 pentagonal prisms (PP). Various 
sequences are possible for constructing and assembling these cells. The plan I chose was to build the TI 
cells individually and join them with struts that outline the PPs. Doing this, the TOs are automatically 
formed in the spaces between the hexagons of neighboring TIs. 
 
Figure 4 shows some of the TI cells ready to be assembled together after an hour or two of construction. 
There are 75 compressed soccer balls in five layers (1+12+20+12+30) from center to exterior. Different 
edge lengths and angles correspond to different degrees of foreshortening. Teams of participants build 
first one type of cell then another, learning the different types of cells and how they are related. Artists are 
familiar with the notion of foreshortening, e.g., a circle seen from an oblique angle is drawn on canvas as 
an ellipse, in accordance with the geometry of perspective. This transformation occurs when we project a 
3D reality on to the restricted 2D space of the canvas. However, it takes some hands on experience to 
understand that in 4D, all the cells of our polytope are quite symmetric, although they appear 
progressively flattened in 3D as we move away from the center, with the outer ones totally flat. 
 

Figure 5. Partial Construction. Figure 6. Reaching the Top! 
 
Figure 5 shows the center module, a blue TI at the top center of the partial construction. We started with 
the center and worked our way toward the bottom. When complete, the center TI will be surrounded on 
twelve sides with a layer of slightly foreshortened TIs. Five struts are used to connect pentagon to 
pentagon, which creates cells in the form of PPs. Then additional layers of TIs surround these, each 
successively more foreshortened.  
 
A number of engineering considerations must be addressed during construction. Because we are making a 
large spherical form, 6.5 feet in diameter, it would be difficult to reach the top center if we saved it for 
last. So we first built a tall central core straight up to the top. This is shown in Figure 6. After the central 
core is formed, many people can work on it from all sides. Cells are added to the central core in pairs, 
always having two teams work simultaneously from opposite sides, so the structure can not become 
unbalanced and tip over. For strength, some vertical struts are added to carry the load, even though they 
are not part of the mathematical form. It would be great if in the future Zome manufactured clear parts to 
use for this purpose.  
 
Figure 7 shows the construction after 3.5 hours. We are attaching the outer layer of thirty cells that are 
completely foreshortened to two-dimensional flatness. Even before this point, I could walk away and let 



the group work out its own path to completion. During construction, I give specific mechanical 
instructions like “connect part A to part B” and a casual presentation of the mathematical ideas from 
Section 2. Each participant comes to their own understanding of the geometry, e.g., seeing it is uniform 
because four polyhedra meet at every vertex: a TI, a PP, and two TOs. I am always gratified to get to the 
point when some of the participants start answering the questions of others. When they can explain the 
process to each other and together solve the problems of how to attach the next cells, I know I have done 
my job as a teacher.  
 

Figure 7. Nearly Finished. Figure 8. Completed Polytope Model. 
 
Figure 8 shows the final result, after four hours, viewed along a 5-fold axis. It doesn't have any common 
name. The name used in Norman Johnson's upcoming book on uniform polytopes is the Cantitruncated 
600-cell. [16] One may also call it the Truncated Ambo 600-Cell as that may help in visualizing it. The 
projection model is impressive visually and for the amount of loving labor involved. Everyone finds it 
colorful and attractive and wants to have their photo taken with it. The views along its various symmetry 
axes are particularly impressive. In addition, I think that many people find these events fun because they 
are an intellectual challenge that presents stimulating new patterns and relationships to think about.  
 

4. The Fifteen Related H4 Polytopes 
 
The above construction illustrates just one of the fifteen convex uniform 4D polytopes that can be built 
with Zometool, each projected so the front and back overlap. They share the same symmetry group, the 
Coxeter group, H4, of order 14400. [2, 20, 28] Table 1 summarizes this set of polytopes, many of which I 
have built at various workshops at universities or conferences [1, 21], e.g., as part of a geometry exhibit at 
the Chiang Kai-Shek Memorial in Taipei, Taiwan. At the Matematica e Cultura conference in Venice, 
2006, I was invited by Michele Emmer to do an outdoor public construction. This workshop took place in 
a lively city square in Venice, the Campo Sant' Angelo. Given the uncertainties of the environment, I 
chose a can’t-fail polytope that is very easy to parallelize: the expanded (or “runcinated”) 120-cell. 
Participants from the conference and curious members of the public worked together to assemble 4860 
parts into a structure over a meter in diameter, shown in Figure 9. [5] Because of its very light and open 
form, my favorite of the fifteen is the truncated 120-cell. This was first constructed at a workshop I led at 
the Canada/USA MathCamp in UBC in Vancouver, in 2000. [17] Figure 10 shows one at a more recent 
construction I led at Dowling College, NY, in 2006. [6] It is rather fragile and requires a stable 
environment and cautious workers. Reference [28] gives a very readable illustrated introduction to the 
mathematical ideas underlying these polytopes. 



Many other people have also made some of these models and/or organized polytope construction events, 
including Marc Pelletier, Steve Rogers, Paul Hildebrandt, Mira Bernstein, Vin de Silva, David Richter, 
and Dan Duddy. A web page with links to photos of some of these constructions is maintained by Dave 
Richter. [26] Recently, the larger models have been possible, due to Zome’s redesign for tighter 
connections and a shorter length of parts. The largest of the fifteen has 21360 parts. It was first 
constructed at the London Bridges 2006 Conference [1] in all-day event organized by Hildebrandt, 
Duddy, and Richter. We expect the model will be displayed at the London Science Museum. 
 
For others who may wish to organize such events, I offer the following suggestions. First, become 
familiar with Zometool and make the 120-cell. Instructions for it are available in [14] and in a special 
120-cell kit which Zome sells. The truncated 120-cell is also outlined in [14]. When making the 120-cell, 
observe there are four important types of location. The fifteen H4 polytopes differ in terms of what sort of 
cell, if any, appears at each type of location. Name these locations I, T, P5, and P3 as follows: The centers 
of the dodecahedra are locations of icosahedral symmetry (I). The vertices of the 120-cell are locations of 
tetrahedral symmetry (T). The pentagon face centers are locations of pentagonal prism symmetry (P5). 
The midpoints of the struts are locations of triangular prism symmetry (P3). Table 1 shows which sort of 
cell to place at each location in each polytope.  
 
All fifteen polytopes can be made with the same four types of struts: short red, medium red, medium 
yellow, and medium blue. The parts count for each is given in Table 1, as computed by Richter. [25] 
There is always the same number of the two red lengths, so only one column is given for reds. The strut 
lengths can be scaled down to Zome’s new smaller sizes for more rigid models. 
 
Ultimately, it would be magnificent to build all fifteen as an exhibit at a single location, so one can 
directly see the connections between them. If this is done, I propose that the fifteen be arranged in space 
in a giant tetrahedron formation, which would be a kind of “periodic table” of their relationships. Coxeter 
provides a construction for these polytopes in terms of a vertex lying on zero, one, two, or three of the 
four mirror planes that generate the group. [2] The four vertices of the tetrahedron formation correspond 
to the four mirror planes. The four polytopes that are generated by the vertex off just one mirror plane 
would be at the corners of the tetrahedron. The six polytopes that correspond to the vertex lying off two 
mirrors would be at the corresponding edge midpoints. The four polytopes that correspond to the vertex 
lying off three mirrors would be at the tetrahedron’s face centers. And the remaining and most complex 
polytope, in which the vertex lies off all four mirrors, would command the tetrahedron’s center. 
 

  
Figure 9. A Polytope in Venice Figure 10. Truncated 120-Cell 

 
Each H4 polytope has 14400 symmetries, with a fundamental domain (replicated 14400 times) bounded 
by four hyper-planes which are mirror symmetry planes. [2] If we place a vertex in this fundamental 
domain, we obtain the vertices of the “Omnitruncated 120-cell” (line 1111 of Table 1). If we place that 



vertex on one of the boundary planes of the fundamental domain, pairs of mirrored vertices coincide and 
we get only 7200 vertices. If that generating vertex falls simultaneously on more than one mirror plane, 
we get a larger reduction in the number of vertices. In four extreme cases, when the vertex lies on three 
planes, we obtain the simplest cases, e.g., the 600-cell (line 0001 of Table 1). The Wythoff symbol has 
four bits of information, corresponding to the four generating mirror planes. The entry 0 or 1 corresponds 
to the vertex lying on or off the corresponding mirror. The I, T, P5, and P3 columns list which type of cell 
appears at each location, with cell types abbreviated as: T=tetrahedron, O=octahedron, 
CO=cuboctahedron, I=icosahedron, D=dodecahedron, ID=icosidodecahedron, rID=rhombicosido-
decahedron, t=truncated, and Pn=n-gon prism. In 4D, there are 120 of whatever cell appears in the I 
column, 600 of the cell appearing in the T column, 720 of the cell in the P5 column, and 1200 of the cell 
in the P3 column. But in the 3D projection, because the front and back overlap there are only seventy-five 
type I cells to build. Table 1 includes Norman Johnson’s names. [16]  
 

5. Conclusions 
 
The lengths and angles built into Zometool make it relatively easy to build beautiful, large models of 4D 
polytopes from the H4 family. For several years, I have been going around the world leading polytope 
barn raisings. One event, presented as a modern-day sangaku, was described in some detail. Others are 
similar but with different modules. In the process of construction, there are many opportunities to 
introduce the underlying mathematical ideas casually. These hands-on activities introduce mathematical 
ideas in an informal non-threatening way. The interpersonal dynamics of a large group of people working 
over an extended time towards a challenging goal results in a different type of learning experience than 
most people associate with mathematics. Group activities such as this are one way to move mathematics 
in the stream of popular culture. In addition to the colorful attractiveness of the 3D model, participants 
appreciate abstract ideas of higher-dimensional geometry, which hold their own form beauty.  
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Wythoff I T P5 P3 Parts Balls Reds Yellow  Blue Name 

0001 . T . . 351 75 72 120 120 600-cell 
0010 I O . . 2196 396 360 600 480 Rectified 600-cell 
0011 I tT . . 2964 780 432 720 600 Truncated 600-cell 
0100 ID T . . 2440 640 360 600 480 Rectified 120-cell 
0101 ID CO P5 . 7200 1860 1080 1800 1380 Cantellated 600-cell 
0110 tI tT . . 5460 1860 720 1200 960 Bitruncated 120-cell 
0111 tI tO P5 . 10800 3660 1440 2400 1860 Cantitruncated 600-cell 
1000 D . . . 950 330 120 200 180 120-cell 
1001 D T P5 P3 4860 1260 720 1200 960 Runcinated 120-cell 
1010 rID O . P3 7200 1860 1080 1800 1380 Cantellated 120-cell 
1011 rID tT P5 P6 12540 3660 1800 3000 2280 Runcitruncated 600-cell 
1100 tD T . . 3680 1260 480 800 660 Truncated 120-cell 
1101 tD CO P10 P3 12540 3660 1800 3000 2280 Runcitruncated 120-cell 
1110 tID tT . P3 10800 3660 1440 2400 1860 Cantitruncated 120-cell 
1111 tID tO P10 P6 21360 7200 2880 4800 3600 Omnitruncated 120-cell 

Table 1. Data for Fifteen H4 Polytopes
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