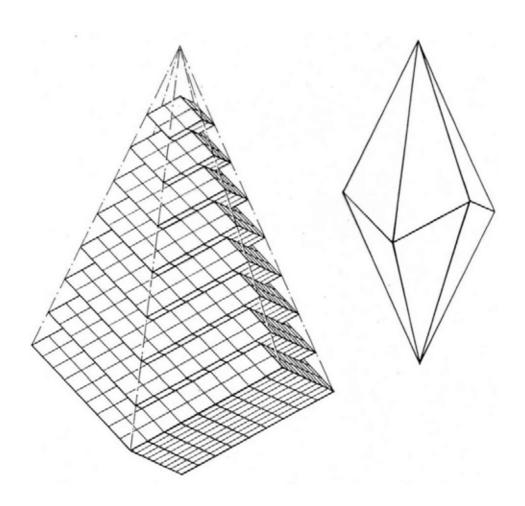
Introduction à la cristallographie

Jacques Deferne



Avant-propos

Chefs d'oeuvres de la nature, par leurs formes géométriques, les cristaux reflètent l'arrangement périodique des atomes qui les constituent.

Cette phrase résume tout le champ d'étude de la cristallographie. Celle-ci est donc l'étude des relations étroites qui relient les formes des cristaux et leurs propriétés physiques et la facon dont les atomes s'arrange dans l'intimité de leur architecture.

Cet ouvrage est destiné avant tout aux étudiants en géologie qui abordent l'étude de la minéralogie. Il s'adresse aussi aux amateurs de minéraux qui voudraient élargir leurs connaissances scientifiques au delà du simple plaisir de contempler un beau cristal.

La cristallographie est une discipline abstraite dont l'étude conduit vite à des formulations mathématiques compliquées. Dans cet ouvrage, je me suis efforcé de recourir le moins possible aux raisonnements purement mathématiques en choisissant une approche empirique des phénomènes.

Le contenu de ce livre résume tout ce qu'un étudiant en géologie devrait connaître avant d'aborder l'étude de l'optique cristalline et de la minéralogie descriptive.

L'amateur de minéraux peut très bien se limiter à l'étude des principaux chapitres qui l'intéressent, en laissant de côté ceux qui lui semblent trop rébarbatifs, tels ceux qui abordent le calcul cristallographique, la projection stéréographique, voire même la cristallochimie.

C'est dans un souci de clarté que la nomenclature utilisée ici a été choisie. Après avoir assimilé la théorie contenue dans cet ouvrage, les lecteurs qui voudraient approfondir davantage la cristallographie pourront alors adopter sans difficulté les abréviations internationales en usage dans la littérature anglo-saxonne.

Jacques Deferne

Table des matières

I. L'état cristallin
II. Première approche des cristaux
III. Jouons avec la symétrie
Les cristaux présentent «une certaine symétrie» - Le plan de symétrie, comme un miroir Les axes de symétrie, comme un carrousel - Le centre d'inversion - Les axes de symétrie inverses - Combinaison d'opérateurs de symétrie - Les 32 classes de symétrie.
IV. Représentation graphique des cristaux
La projection stéréographique - Constructions utilisées en projection stéréographique Projection d'un grand cercle - Projection du pôle d'un grand cercle - Le canevas de Wulff.
V. Les systèmes cristallins
Système cubique - Les mériédries - Les formes composées - A propos de la notation des faces - Nomenclature des formes des autres systèmes cristallins - Système quadratique Système orthorhombique - Systèmes hexagonal et rhomboédrique - Système monoclinique Système triclinique.
VI. L'organisation des atomes
VII. Les rayons X au service de la minéralogie
Nature des rayons X - Absorption des rayons X - Détection des rayons X - Interaction des rayons X avec la matière - Diffraction des rayons X par les cristaux - Conditions de diffraction - Une application simple : la méthode des poudres - Exemple concret - Identification d'une espèce minérale - Le diffractomètre - Analyse chimique par effet de fluorescence X.
VIII. Quelques relations mathématiques
Le calcul cristallographique - Les zones - La loi de Weiss.
IX. Un peu de cristallochimie
La taille des atomes - Encombrement des constituants structuraux - Composés du type AB - In- fluence des liaisons - Les formules cristallochimiques - Quelques structures classiques - Structure des minéraux silicatés.
X. Aspect et propriétés des minéraux
Habitus - groupement de minéraux - clivage - Les macles - Les macles du quartz - Le polymor- phisme - L'isomorphisme - Les séries isomorphes - Les minéraux ne sont pas toujours bien dans leur peau. L'anisotropie - Aspect des faces - Les inclusions - Le poids spécifique- La dureté Ani- sotropie de la dureté - Dureté relative, dureté absolue - La fusibilité - Les propriétés optiques - La transparence - La couleur est trompeuse - L'indice de réfraction - L'éclat permet de briller - La photoluminescence - Les propriétés électriques - Les propriétés magnétiques - Les propriétés chimiques.

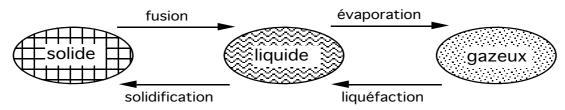
I. L'état cristallin

Les trois états de la matière

La matière existe à l'état solide, liquide ou gazeux. On parle aussi de phase solide, liquide ou gazeuse. L'exemple qui nous est le plus familier est celui de l'eau qui, à pression ordinaire, se trouve à l'état solide en dessous de 0°, à l'état liquide entre 0° et 100° et à l'état gazeux au-dessus de 100°.

Le passage de l'état solide à l'état liquide s'appelle la fusion, celui de l'état liquide à l'état gazeux l'évaporation. Dans le sens contraire, nous avons la liquéfaction ou condensation qui ramène un corps de l'état gazeux à l'état liquide, puis la solidification qui le fait passer à l'état solide.

Sous certaines conditions, les corps peuvent passer directement de l'état solide à l'état gazeux et, réciproquement, de l'état gazeux à l'état solide. On parle dans les deux cas de sublimation.

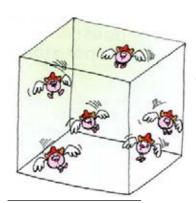


Les trois états de la matière

La théorie cinétique des gaz nous enseigne que les molécules possèdent une énergie proportionnelle à la température absolue. Cette énergie, sous forme cinétique, communique aux molécules une vitesse élevée. Ainsi à température ordinaire, les molécules d'air qui nous entourent (azote, principalement) se déplacent à une vitesse d'environ 300 m/s.

Par ailleurs, ces molécules sont attirées les unes vers les autres par des forces de cohésion qui ne s'exercent effectivement que lorsqu'elles sont très proches l'une de l'autre. Lorsque leur vitesse est élevée, elles se déplacent en ligne droite, rebondissant sur les obstacles qu'elles rencontrent. Proportionnellement à leur taille, elles restent éloignées les unes des autres et elles ne se heurtent que rarement. Dans ce dernier cas, elles rebondissent aussitôt, car les forces de cohésion ne sont pas assez grandes, relativement à celle de leur énergie cinétique, pour les maintenir réunies. C'est l'état gazeux. Le remplissage de l'espace est faible et, à pression ordinaire, le poids spécifique d'un gaz est peu élevé. Un mètre cube d'air ne pèse que 1.3 kg.

Si la température baisse, l'énergie cinétique des molécules diminue et leur vitesse est plus faible.

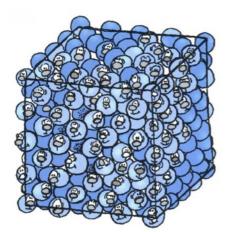


L'état gazeux : les molécules sont éloignées les unes des autres et sont animées d'une vitesse élevée.

L'état liquide : les molécules sont proches les unes des autres. Elles peuvent glisser les unes sur les autres.

Nous appelons "molécules", des particules élémentaires sans préciser pour l'instant s'il s'agit d'atomes ou de molécules au sens où l'entendent les chimistes.

Les forces de cohésion parviennent à les maintenir en contact les unes avec les autres. Les liaisons sont toutefois assez lâches et les molécules sont animées de mouvements pendulaires qui leur permettent de glisser les unes sur les autres. Elles ne peuvent être maintenues réunies qu'en de très petits volumes, les gouttes. Pour des quantités plus importantes, il faut un récipient pour les maintenir ensemble. C'est l'état liquide. Si la température baisse encore, l'énergie cinétique des molécules n'est plus suffisante pour leur permettre de se déplacer. Elles sont animées d'un mouvement de vibrations de faible amplitude autour d'une position fixe. C'est l'état solide. De plus, elles ne sont pas immobilisées dans des positions quelconques, mais tendent à se disposer d'une manière parfaitement ordonnée qui détermine une configuration géométrique répétitive dans les trois dimensions de l'espace. Cet état ordonné de la matière solide s'appelle l'état cristallin.



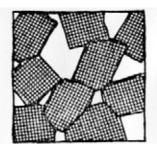
L'état cristallin : les atomes sont maintenus à des emplacements fixes. Ils vibrent sans s'écarter trop de leur place.

Dans l'état cristallin, les molécules sont arrangées selon une configuration parfaitement géométrique.

La plupart des substances minérales à l'état solide sont cristallisées. L'état cristallin est l'état normal du règne minéral. Certains corps font exception et les atomes qui les constituent sont disposés en désordre. Ce sont principalement les verres et certains plastiques. Les physiciens les considèrent comme de "faux états solides" et les assimilent à des liquides extrêmement visqueux.

L'état cristallin ne se limite pas uniquement aux beaux cristaux des musées, mais il s'étend à la quasi totalité des substances solides du règne minéral. L'état cristallin n'implique pas nécessairement la présence de cristaux bien développés aux faces lisses et brillantes. Ainsi, les minéraux constitutifs du granite (quartz, feldspath et mica) sont des grains sans contours bien définis. Au cours de leur croissance dans le magma originel, les germes cristallins se sont développés tout d'abord librement, puis, en gran-

dissant, il se sont gênés mutuellement dans leur croissance, occupant les espaces laissés vides par leurs voisins au détriment de leur forme propre. Ce sont des minéraux dits xénomorphes.



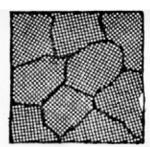


Schéma de la croissance des minéraux d'une roche éruptive.

A l'opposé, les cristaux bien développés, ceux qu'on admire dans les vitrines des collectionneurs, se forment dans des conditions bien particulières. Ils ont cristallisé dans des espaces libres, fissures ouvertes, géodes, sans rencontrer d'obstacles au cours de leur croissance. C'est le cas des "fissures alpines" qu'on rencontre dans les roches de composition granitique. Sur les parois de ces fissures, les eaux de circulation venant de zones profondes, chaudes et chargées de substances chimiques, ont petit à petit abandonné les sels minéraux qu'elles véhiculaient, au fur et à mesure que la pression et la température diminuaient. On utilise l'adjectif idiomorphe pour qualifier les minéraux qui présentent des formes cristallines bien développées.

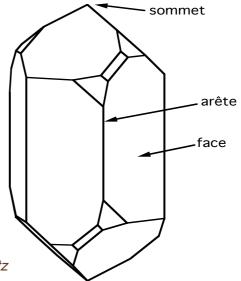
Minéraux informes dans une roche

Halite en cristaux bien développés

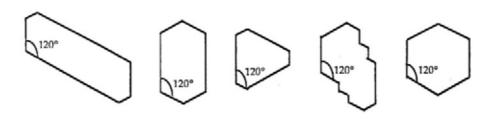
II. Première approche des cristaux

La loi de la constance des angles

Les beaux cristaux, également développés dans toutes les directions, comme celui représenté ci-contre, sont plutôt rares. Sur celui-ci, on distingue des faces planes, limitées par des arêtes qui convergent vers des sommets. Depuis très longtemps, les naturalistes, intrigués par les formes géométriques des minéraux, ont comparé les diverses formes cristallines entre elles. En 1669, le danois Nicolas Steno, qui avait effectué des sections à travers de nombreux cristaux de quartz d'origines diverses, énonce la loi de la constance des angles.



Forme idéalisée d'un cristal de quartz



Sections à travers différents cristaux de quartz

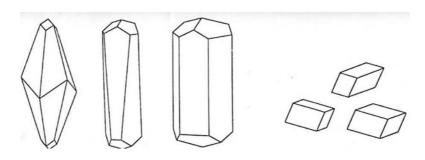
Quelque soit l'aspect extérieur et la dimension des cristaux d'une même espèce cristalline, les angles que font entre elles les faces correspondantes sont égaux.

En termes plus concrets, cette loi signifie que l'orientation d'une face vis à vis des autres faces est toujours la même. La forme apparente d'une face, son contour ou l'importance de son développement n'ont pas de signification particulière. C'est son orientation dans l'espace, relativement aux autres faces, qui est importante.

Trois aspects différents de la pyrite. Les contours et l'importance du développement des faces et sont différents d'un exemple à l'autre. Toutefois leur orientation réciproque est constante et l'angle qu'elles font entre elles est de 54° 44'.

Théorie de la molécule constituante

La calcite est un minéral fascinant qui montre une grande diversité de formes. Le point commun de toutes ces formes est leur mode de fragmentation : si on casse un cristal de calcite on obtient, non pas des fragments informes qui rappelleraient le verre brisé, mais des parallélépipèdes qui ressemblent à des cubes déformés et que les cristallographes nomment rhomboèdres. Ceux-ci se fragmentent à leur tour en d'autres rhomboèdres plus petits, aussi loin que le pouvoir séparateur du microscope permet de les observer.

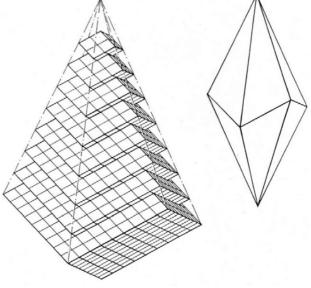


Trois formes différentes de la calcite

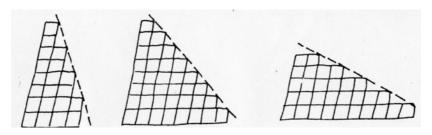
Rhomboèdres de clivage

A partir de cette observation, l'abbé René-Just Haüy a imaginé qu'il devait exister une "brique élémentaire" - le rhomboèdre, dans le cas de la calcite - qu'il désigna sous le nom de molécule constituante. Par empilements de rhomboèdres, il est parvenu à reconstituer toutes les formes de la calcite. Dans son Essai d'une théorie de la structure des cristaux, paru en 1784, il définit le terme de structure comme le mode d'arrangement des molécules constituantes. Nous savons aujourd'hui que la molécule constituante n'existe pas réellement sous la forme qu'Haüy avait imaginée. Toutefois, le mérite de cette théorie est d'avoir mis en évidence le caractère périodique de l'architecture intime des cristaux et d'avoir pressenti, sans le deviner vraiment, l'existence de la maille élémentaire. Sa découverte a ouvert la voie de la cristallographie moderne.

René-Just Haüy, 1743-1822, professeur de minéralogie au Jardin des Plantes, à Paris.



Scalénoèdre ditrigonal reconstitué par empilement de rhomboèdres élémentaires (dessin d'Haüy).



Lois de décroissance des gradins déterminant l'orientation des faces (selon Haüy).

La loi des caractéristiques entières

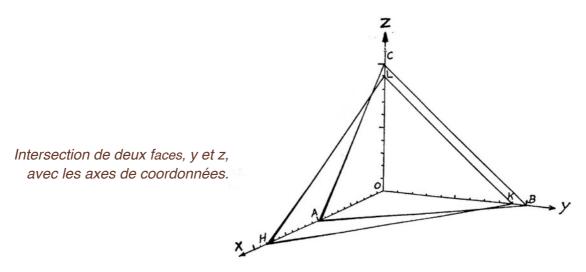
Déjà à la fin du XVIIIe siècle (Haüy 1781, Bergmann 1773), quelques naturalistes avaient remarqué que les faces des cristaux n'avaient pas des orientations quelconques, mais que leur position relative aux autres faces était parfaitement bien définie. En choisissant judicieusement des axes de coordonnées ainsi que les unités relatives sur ces axes, ils avaient constaté que toutes les faces d'un cristal coupaient ces axes à des distances formant entre elles des rapports de nombres entiers relativement simples.

Pour mieux comprendre cette loi, examinons un cristal de barytine. On remarque que ce cristal présente une "certaine symétrie".

On pourrait "l'enfermer" dans un parallélépipède rectangle engendré par l'extension imaginaire des faces a, b et c. Choisissons des axes de coordonnées parallèles aux trois arêtes de notre parallélépipède et passant par le centre du cristal. Elles déterminent les axes X, Y et Z. Choisissons une face oblique sur les trois premières, z, par exemple. Si on la prolonge, elle coupe les axes aux points A, B et C. Décidons encore d'adopter, sur chacun des axes, des unités relatives proportionnelles aux distances OA, OB et OC.

Essayons d'exprimer l'orientation des autres faces au moyen des paramètres ainsi définis. Ainsi la face y coupe les axes en H, K et L. On peut exprimer les distances OH, OK et OL en fonction des unités relatives OA, OB et OC. On constate que la face y coupe les axes aux distances :

$$\frac{OH}{OA} = \frac{OK}{OB} = \frac{OL}{OC}$$
 soit dans notre exemple : $\frac{18}{10} = \frac{9}{10} = \frac{9}{10}$



Comme on peut toujours déplacer une face parallèlement à elle-même, ce sont les rapports de ces trois nombres qui nous intéressent, soit, dans le cas présent 211.

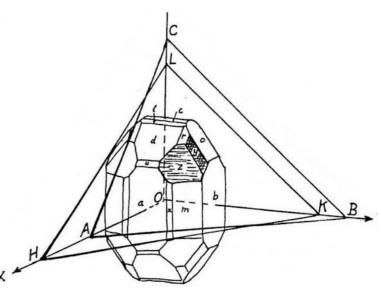
On peut ainsi toujours exprimer l'orientation d'une face par trois nombres premiers entre eux ne dépassant que rarement 10. Ces nombres, positifs ou négatifs suivant le côté où ils coupent l'axe, constituent la notation de la face. La loi des caractéristiques entières s'exprime de la manière suivante :

Les rapports des segments déterminés sur les mêmes axes par deux faces quelconques sont toujours des nombres rationnels relativement simples.

La notation des faces

On peut donc exprimer l'orientation d'une face au moyen de trois nombres entiers qui sont les

rapports des distances (exprimées dans les unités définies plus haut) auxquelles elle intercepte les axes de coordonnées. Cette notation directe s'appelle la notation de Weiss'. Elle a l'inconvénient de comporter le symbole [∞] pour les faces parallèles à un ou à deux axes de coordonnées. Aussi lui préfère-t-on la notation dite de Miller, universellement utilisée aujourd'hui, constituée de trois nombres entiers h, k et l, qui sont les inverses des rapports des distances interceptées sur les axes. Le symbole ∞ devient 0 et peut donc faire l'objet d'opérations mathématiques. On obtient donc des rapports de fractions ordinaires qu'on transforme ensuite en rapports



Barytine avec ses axes de coordonnées

de nombres entiers vis-à-vis d'un dénominateur commun. Ces trois nombres sont mis entre parenthèses : (hkl). La face y est donc notée (122).

face	intersections sur les axes (WEISS)	Inverses	notation de MILLER
Z	1 1 1	<u>1 1 1</u> 1 1 1	(111)
у	211	<u>1 1 1</u> 2 1 1	(122)
r	221	1 1 1 2 2 1	(112)
d	2∞1	1 1 1 2 ∞ 1	(102)
т	11∞	1 1 1 1 1 ∞	(110)

¹ Christian Samuel Weiss, cristallographe allemand, 1780-1856.

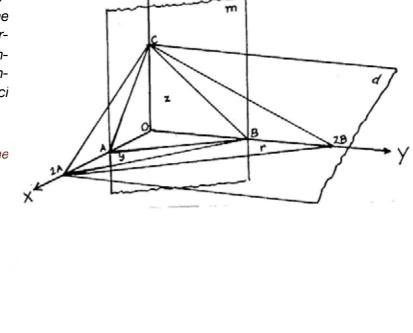
² William Miller, cristallographe anglais, 1801-1880.

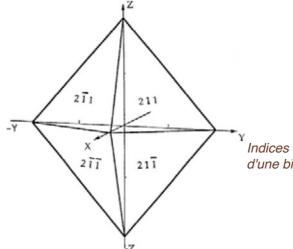
La figure ci-dessus représente à nouveau les axes de coordonnées avec les unités définies pour la barytine, ainsi que les orientations des faces x, y, d et m, avec leurs intersections sur les axes. En les déplaçant parallèlement à elles-mêmes, on arrive toujours à ce qu'elles interceptent les axes à des nombres entiers d'unités (conséquence de la loi des indices rationnels). La notation de chaque face s'obtient donc en prenant les inverses des longueurs interceptées sur chaque axe.

On cherche ensuite le plus petit commun dénominateur et on porte les valeurs du numérateur entre parenthèses. Le tableau ci-dessous résume cette opération pour les diverses faces de la barytine.

Si une face intercepte le côté négatif d'un axe, on place un signe négatif [i] audessus du chiffre correspondant. Dans un texte, les indices sont placés entre parenthèses. Sur un dessin celles-ci peuvent être supprimées.

Orientation des faces de la barytine





Indices de Miller des faces visibles d'une bipyramide rhombique

Choix des axes de coordonnées

Un choix judicieux des axes est nécessaire afin que les indices des faces soient des nombres entiers relativement simples. Dans la mesure du possible, on s'efforce de choisir des **faces primitives**, c'est à dire trois faces dont les intersections mutuelles détermineront les axes de coordonnées, ayant entre elles des rapports géométriques les plus simples possibles.

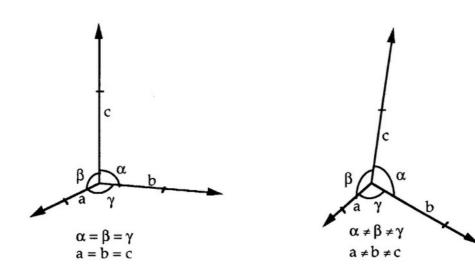
Le choix de la **face unitaire**, c'est-à-dire celle dont les intersections avec les axes déterminent les unités, doit être particulièrement judicieux. On la choisira généralement en raison de son développement important.

Notons que ces unités ne sont que des valeurs relatives l'une à l'autre et qu'il ne s'agit pas de valeurs absolues. Ainsi, pour chaque espèce minérale, après avoir fait le choix des axes de coordonnées et de la face unitaire, on note la valeur des paramètres de la manière suivante :

 $\frac{OA}{OB}$: $\frac{OB}{OB}$: $\frac{OC}{OB}$

Au XIXe siècle, ces paramètres ont été calculés pour la plupart des espèces minérales. Ce calcul porte le nom de calcul cristallographique. Il s'effectue à partir des mesures des orientations mutuelles des faces à l'aide d'un goniomètre. Nous verrons plus loin les principes de ces calculs.

A titre d'exemple, les paramètres de la barytine exprimés de cette manière, sont 1.627 : 1 : 1.311. Pour définir complètement les axes de coordonnées d'une espèce minérale, il faut indiquer les angles que font entre elles les directions des axes ainsi que les paramètres définis plus haut. Le cas le plus simple est celui d'axes orthogonaux avec des paramètres tous égaux. Le plus compliqué est celui d'axes non orthogonaux avec des paramètres tous différents.



Axes orthogonaux avec

des paramètres égaux.

Axes non orthogonaux avec

des paramètres inégaux.

III. Jouons avec la symétrie

Les cristaux présentent une «certaine symétrie»

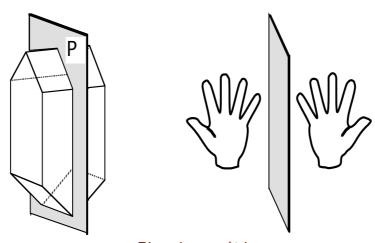
Les cristaux bien développés montrent des faces planes limitées par des arêtes qui elles-mêmes convergent vers des sommets. En observant attentivement les cristaux, on constate qu'ils présentent une "certaine symétrie".

Ce terme de symétrie recouvre en fait une discipline abstraite qui relève des lois de la géométrie. Il s'agit de lois de répétitions effectuées par des **o**pérateurs de symétrie dont les principaux sont le plan de symétrie, l'axe de symétrie et le centre d'inversion.

Le plan de symétrie, comme un miroir

C'est un plan qui caractérise les symétries bilatérales. Il dédouble les éléments d'un objet, agissant comme un miroir. Toutes les faces, arêtes et sommets d'un cristal retrouvent une image identique (mais non superposable) de l'autre côté du plan. Ainsi, vue dans un miroir, la main droite aura l'air d'une main gauche. On qualifie d'énantiomorphes de tels objets identiques mais non superposables.

Si tous les points d'un objet peuvent être répétés sur des normales à un plan, à égale distance de part et d'autre de celui-ci, on dit qu'il possède un plan de symétrie.



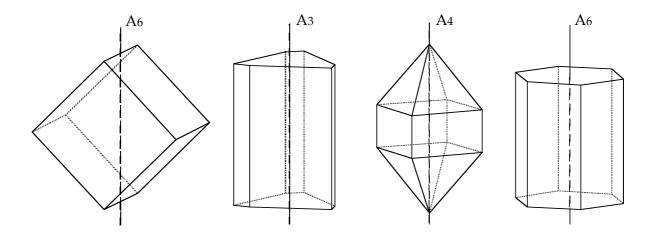
Plan de symétrie.

Le plan de symétrie produit des objets non superposables, dits «énantiomorphes»

Les axes de symétrie, comme un carrousel!

Ici, toute les faces, arêtes et sommets sont "répétés" par rotation autour d'un axe. Au cours d'une rotation complète (360°), chaque élément est répété 2, 3, 4 ou 6 fois, suivant l'ordre de l'axe. Dans le monde minéral il n'existe que des axes d'ordre 2, 3, 4 et 6.

Si, au cours d'une rotation de 360° autour d'une droite, un objet prend n positions identiques telles qu'une d'entre elles ne peut pas être distinguée de la précédente, on dit qu'il possède un axe de symétrie d'ordre n.

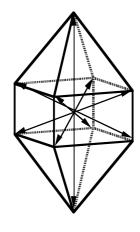


Axes de symétrie d'ordre 2, 3, 4 et 6. On voit que les axes peuvent passer par le milieu d'arêtes opposées, par le milieu de faces opposées ou par des sommets opposés.

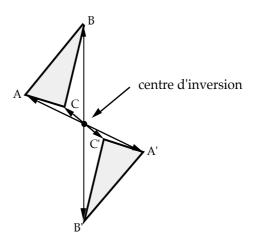
Le centre d'inversion

Toutes les faces de la forme cristalline sont reproductibles deux à deux par inversion de leurs sommets et de leurs arêtes par rapport à un centre d'inversion, appelé parfois aussi centre de symétrie.

Si tous les points d'un objet peuvent être répétés sur des droites concourantes à un point et à égales distances de part et d'autre de celui-ci, on dit qu'il possède un centre d'inversion.



Forme cristalline avec un centre d'inversion.



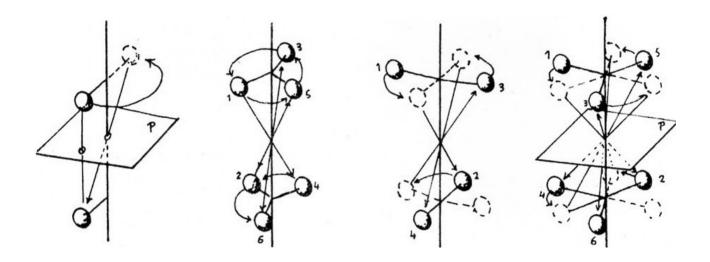
Mécanisme de l'inversion.

Chaque face d'une forme cristalline ayant un point d'inversion, possède une face équivalente parallèle. Cette particularité permet de reconnaître la présence ou l'absence de cet opérateur de symétrie.

Les axes de symétrie inverses

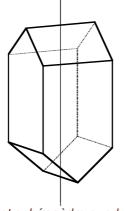
L'axe inverse est un opérateur multiple qui associe deux opérations : un axe et un point d'inversion.

On dit qu'un objet possède un axe d'inversion d'ordre n si tous ses points peuvent être répétés par une rotation de 360°/n suivie d'une inversion par rapport à un point situé sur cet axe.

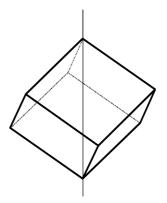


Axes d'inversion d'ordre 2, 3, 4 et 6. On remarque que l'axe inverse d'ordre 2 correspond à une réflexion sur un plan normal. De même, l'axe inverse d'ordre 6 correspond à un axe direct d'ordre 3 associé à un plan perpendiculaire.

Les axes inverses peuvent tous être exprimés par des combinaisons d'opérateurs simples, à l'exception de l'axe inverse d'ordre 4 qui est le seul à présenter une identité propre.



Prisme et sphénoèdre quadratiques avec leur axe inverse d'ordre 4.



Rhomboèdre avec son axe inverse d'ordre 3.

Opérateurs de symétrie ponctuelle et symboles qui les désignent

Opérateur	Opération	Multiplicité	Notation pratique	Not. inter- nationale	Opérateurs équivalents
axe d'ordre 2	rotation	2	A2	2	
axe d'ordre 3	II .	3	Аз	3	
axe d'ordre 4	п	4	A4	4	
axe d'ordre 6	II	6	A6	6	
plan	réflexion	2	P	m	
centre	inversion	2	С	1	peut être considéré comme un axe inverse d'ordre 1
axe inv. d'ordre 2	rot. + inv.	2	P	2 = m	équivaut à un plan normal à l'axe
axe inv. d'ordre 3	rot. + inv.	6	A ⁶	3	équivaut à A3 + C
axe inv. d'ordre 4	rot. + inv.	4	A 4	4	identité propre
axe inv. d'ordre 6	rot. + inv.	6	(A3 P3)	6	équivaut à A ₃ + P ₃ (plan normal)

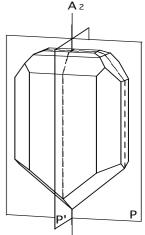
Combinaisons d'opérateurs de symétrie

La symétrie de chaque forme cristalline est conditionnée par la présence d'un certain nombre d'opérateurs de symétrie.

Par exemple, l'hémimorphite (un silicate de zinc) possède 2 plans de symétrie et un axe d'ordre 2 passant par l'intersection des plans. Certains cristaux présentent une symétrie basse : un seul axe, un plan, alors que d'autres présentent une symétrie élevée, caractérisée par la présence de nombreux opérateurs de symétrie. Le cube, par exemple, comporte 13 axes de symétrie, un centre d'inversion et 9 plans.

L'ensemble des opérateurs de symétrie qui caractérisent une forme cristalline constitue sa formule de symétrie. Il est intéressant de noter que tous les opérateurs de symétrie caractérisant un objet, concourent en un point commun au centre de cet objet. Pour cette raison on parle de symétrie ponctuelle.

Les combinaisons d'opérateurs de symétrie obéissent à des lois très strictes (des théorèmes) qui en limitent le nombre. Ainsi, dans le monde minéral, on ne trouve que 32 combinaisons possibles qui définissent les 32 classes de symétrie. Chaque espèce minérale appartient nécessairement à l'une de ces 32 classes. Les théorèmes de symétrie constituent un auxiliaire précieux dans la recherche des "formules de symétrie" et permettent de reconstituer facilement les 32 classes de symétrie.



Hémimorphite et ses trois éléments de symétrie.

Les 32 classes de symétrie

On peut reconstituer systématiquement les 32 classes de symétrie en examinant successivement les sept associations possibles d'opérateurs et, pour chacune d'elles, on essaye les diverses combinaisons d'axes, plans et centre d'inversion, en prenant soin de respecter les théorèmes de symétrie. Le tableau de la page 20 présente l'ensemble de ces combinaisons. Le tableau de la page 22 présente, sous une autre disposition, les 32 classes de symétrie.

Rappelons que la multiplicité M d'une classe de symétrie correspond au nombre de répétitions d'une face d'orientation quelconque (ni normale, ni parallèle à un axe) par les opérateurs de symétrie.

Dans chaque système, une classe possède la multiplicité maximum. Cette classe, la plus symétrique du système considéré, est l'holoédrie. Si la multiplicité diminue de moitié on a une hémiédrie; si elle diminue encore une fois de moitié c'est une tétartoédrie.

Ces termes comportent parfois un préfixe ou sont remplacés par d'autres termes plus particuliers. Ainsi l'holoaxie est une mériédrie qui n'a conservé que les axes, alors que dans l'exemple de l'hémimorphite (ci-dessus) est caractérisée par la disparition du plan normal à un axe principal. On utilise parfois le préfixe para- pour les hémiédries centrées et anti- lorsqu'il n'y a pas de centre.

Les principaux théorèmes de symétrie ponctuelle

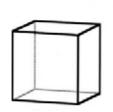
- Une forme cristalline ne peut avoir que des axes d'ordre 2, 3, 4, 6. (Il s'agit d'un théorème restrictif qui ne s'applique qu'aux substances cristallisées)
- 2a un plan perpendiculaire à un axe d'ordre pair entraîne l'existence d'un centre d'inversion;
- un centre d'inversion situé sur un plan implique l'existence d'un axe d'ordre pair normal au plan et passant par le centre;
- un centre situé sur un axe pair entraîne l'existence d'un plan normal à l'axe et passant par le centre.
 - (C'est un théorème important. On peut le résumer en disant que pour les trois opérateurs, axe pair, plan normal et centre d'inversion, l'existence de deux d'entre eux entraîne l'existence du troisième)
- 3 un plan normal à un axe impair (axe d'ordre 3) interdit la présence d'un centre;
- la présence d'un axe binaire perpendiculaire à un axe d'ordre k entraîne l'existence de k 4 a axes binaires perpendiculaires à cet axe; l'angle déterminé par deux axes binaires est alors égal à π/k;
- 4b dans une figure qui n'a que k axes binaires situés dans un même plan, la perpendiculaire au plan est alors un axe d'ordre k;
- 5a si une figure a un axe d'ordre k et un plan passant par cet axe, cela entraîne l'existence de k plans passant par l'axe; l'angle entre deux plans est alors π/k ;
- 5 b si une figure n'a que k plans passant par une droite, celle-ci est un axe d'ordre k;
- lorsqu'il y a plus d'un axe d'ordre supérieur à 2, les seules combinaisons possibles d'axes sont 3A2 4A3 ou 3A4 4A3 6A2. Toutefois les axes d'ordre 3 et 4 peuvent devenir des axes inverses;
- 7a un axe impair devient un axe inverse s'il existe un centre;
- 7b un axe inverse impair implique l'existence d'un centre et exclut l'existence d'un plan normal;
- 7c un axe inverse d'ordre 4 est un opérateur qui n'admet ni plan normal ni centre.

On voit donc que les 32 classes de symétrie se répartissent à leur tour en sept systèmes cristallins, définis chacun par une association particulière d'opérateurs de symétrie. Ces sept systèmes correspondent aussi à sept parallélépipèdes dont les arêtes serviront d'axes de coordonnées pour les représentations graphiques des cristaux.

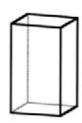
Les sept systèmes cristallins

Système	Caractéristique	Multiplicité de l'holoédrie
cubique	4 axes d'ordre 3	48
quadratique	un axe principal d'ordre 4	16
orthorhombique	3 éléments binaires	8
monoclinique	un élément binaire	4
hexagonal	un axe principal d'ordre 6	24
rhomboédrique	un axe principal d'ordre 3	12
triclinique	axe direct ou inv. d'ordre 1 (C ou rien)	2

On appelle holoédrie une forme qui présente la totalité des éléments de symétrie du système. La multiplicité est le nombre de fois qu'une face orientée d'une manière quelconque est répétée par les éléments de symétrie.

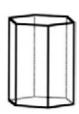


Cubique Cube



Quadratique
Prisme droit
à base carrée

Orthorhombique
Prisme droit
à base rectangle



Hexagonal
Prisme droit à base
hexagonale

Rhomboédrique rhomboèdre

Monoclinique prisme oblique à base rectangle

Triclinique prisme oblique sur toutes les arêtes

Les 32 classes de symétrie

Système	Formule de symétrie	Mult.	Classe	Not.intern.
Cubique	3A ₄ 4A ⁶ / ₃ 6A ₂ C3P ₄ 6P ₂	48	holoédrie	m3m
	3A4 4A3 6A2	24	holoaxie	432
	3 A ⁴ / ₂ 4A ₃ 6P ₂	24	antihémiédrie	43m
	3A ₂ 4A ⁶ / ₃ C3P ₂	24	parahémiédrie	m3
	3A ₂ 4A ₃	12	tétartoaxie	23
Quadratique	A42A22A2CP42P22P2	16	holoédrie	4/mmm
	A4 2A2 2A2	8	holoaxie	422
	A4 2P2 2P'2	8	hémimorphie	4mm
	A ₄ C P ₄	8	parahémiédrie	4/m
	A ⁴ / ₂ 2A2 2P2	8	antihémiédrie	42m
	$A^4/_2$	4	tétartoédrie	4
	A ₄	4	tétartoédrie hémimorphe	4
Monoclinique	A ₂ C P ₂	4	holoédrie	2/m
	A ₂	2	holoaxie	2
	P ₂	2	antihémiédrie	m
Orthorhombique	A ₂ A ₂ A" ₂ C P ₂ P' ₂ P" ₂	8	holoédrie	mmm
	A2 A2 A"2	4	holoaxie	222
	A ₂ P' ₂ P" ₂	4	hémimorphie	mm2
Hexagonal	A63A23A'2CP63P23P'2	24	holoédrie	6/mmm
	A6 3A2 3A'2	12	holoaxie	622
	A ₆ 3P ₂ 3P' ₂	12	hémimorphie	6mm
	A ₆ C P ₆	12	parahémiédrie	6/m
	A3 3A2 P3 3P2	12	antihémiédrie	6m2
	A ₃ P ₃	6	tétartoédrie	6
	A ₆	6	tétartoédrie hémimorphe	6
Rhomboédrique	A_{3}^{6} 3A ₂ C 3P ₂	12	holoédrie	3 m
	A3 3A2	6	holoaxie	32
	A ₃ 3P ₂	6	hémimorphie	3 m
	A6/3 C	6	parahémiédrie	3
	A3	3	<i>tétartoédrie</i>	3
Triclinique	C	2	holoédrie	1
	_	1	hémiédrie	1

Recherche systématique des 32 classes de symétrie

	axe(s) seul(s)	axe inverse	axe + plan ⊥	axe + plan // à l'axe	$axe + axes$ binaires \bot	$axe + plan \perp + plan // + C$	axe inverse + plan passant par l'axe
Notation internationale ¹	×	ı×	m/X	Ж	X2	X/mm	Хm
triclinique		O					
monoclinique	A2	Ь	A2 C P2				
orthorhombique				A2 P'2 P"2	A2 A'2 A"2	A2 A'2A"2 C P2 P'2P"2	
rhomboèdrique	A3	A3 C	(A3 P3)	A3 3P2	A3 3A2	A6/3 3A2 C 3P2	A6/3 3A2C3P2
quadratique	A4	A4/2	A4 C P4	A4 2P2 2P"2	A4 2A2 2A'2	A42A22A'2CP42P22P'2	A4/2 2A 22P'2
hexagonal	A6	A6/3 (= A3 P3)*	A6 C P6	A6 3P2 3P'2	A6 3A2 3A'2	A63A23A'2CP63P23P'2	A33A2P33P'2
cubique	3A24A3	A3 P3	3A2 4A3 C 3P2	3A4 4A3 6A2	3A4 4A3 6A2	3A4 4A3 6A2 C 3P4 6 P2	34/2 4A3 C 6P2

1 La notation dite "Hermann-Mauguin" est celle utilisée dans les tables internationales de cristallographie. Elle a l'avantage d'être très condensée mais présente l'inconvénient de ne pas être "visuelle" Elle est basée sur le principe suivant : X (un nombre) désigne un axe d'ordre X, \overline{X} désigne un axe inverse d'ordre X, X/m , un Ainsi 432 signifie 3A4 4A3 6A2 (théorème VII) et 3A4 4A3 6A2 C 3P4 6 P2 devient 4/m3m, ce qui signifie axes d'ordre 4 avec des plans normaux (4/m) et axes axe normal à un plan, Xm un plan passant par l'axe, X2, un axe d'ordre X avec des axes binaires perpendiculaires à cet axe, Xmm, un axe avec les 2 sortes de plans. Cette notation implique une parfaite connaissance des théorèmes de symétrie, car les éléments rendus obligatoires par ces derniers ne figurent pas dans la formule. d'ordre 3 passant par les axes. Cette notation peut être encore simplifiée : 4/m3m devient même m3m!

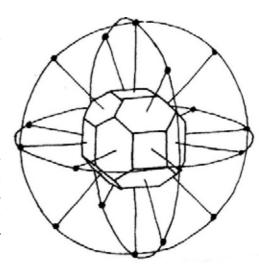
* Rappelons que 3 s'exprime parfois ou par son équivalent A3 C et que 6 est remplacé par son équivalent A3 P3. Pour plus de clarté nous utiliserons tantôt l'un, tantôt l'autre.

IV. Représentation graphique des cristaux

Nous n'allons pas traiter de la manière dont les cristaux sont dessinés, mais de leur représentation dans les divers systèmes de projection, en particulier la projection stéréographique.

Nous savons déjà que c'est l'orientation d'une face qui importe et non son contour ou l'importance de son déve-loppement. Aussi sommes-nous conduits à adopter un système de projection dite "polaire", pour représenter les faces d'un cristal. On procède en deux temps : tout d'abord on imagine le cristal au centre d'une sphère. Dès lors, chaque face est représentée par l'intersection avec la sphère de sa normale passant par le centre de la sphère. Ce point est qualifié de pôle de la face.

Il faut ensuite imaginer un système de projection sur un plan, de l'ensemble des pôles des faces. C'est le même problème que celui des géographes qui doivent repré-

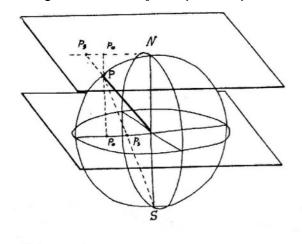


Représentation des pôles des faces d'un cristal sur une sphère.

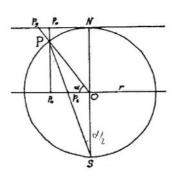
senter notre globe terrestre sur une carte de géographie plane. On peut imaginer trois sortes de projection du pôle P d'une face :

- la projection orthogonale, qui consiste à abaisser la normale du pôle P en un point Po, sur le plan de projection (le plan équatorial ou le plan tangent au pôle nord de la sphère, dans notre exemple).
- la projection gnomonique, qui consiste à prolonger la polaire jusqu'au plan tangent à un des pôles de la sphère (P_q).
- La projection stéréographique, qui utilise le plan équatorial comme plan de projection et le pôle S comme point de vue (P_S).

C'est surtout la projection stéréographique qui est utilisée en cristallographie. Elle possède l'avantage sur les autres que la projection d'un cercle reste un cercle et que les angles entre les arcs de grands cercles (plans passant par le centre de la sphère) sont projetés en vraie grandeur.



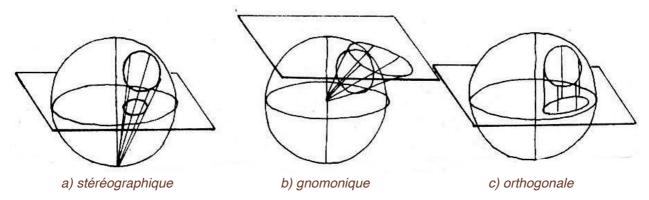
 $OP_0 = r \cos \alpha$ $NP_g = r \cot \alpha$ $OP_s = r \cot \alpha/2$



Divers systèmes de projection du pôle P

Po projection orthogonale Pa projection gnomonique

Ps projection stéréographique

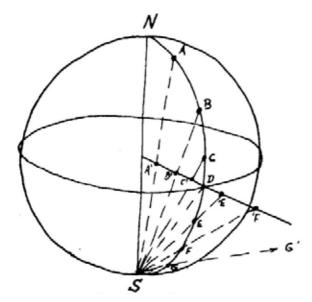


Représentation d'un cercle selon diverses projections.

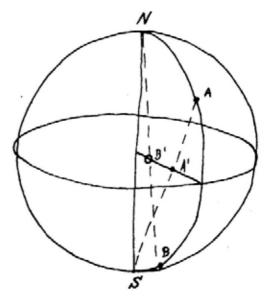
La projection gnomonique est utilisée lorsqu'on veut dessiner des cristaux en perspective. La projection stéréographique est d'un emploi simple et commode. Elle peut être utilisée dans de nombreux problèmes se rapportant à l'orientation de plans dans l'espace, en particulier en géologie appliquée.

La projection stéréographique

La projection a lieu sur le plan défini par le cercle équatorial qu'on nomme cercle de base ou encore cercle de projection. Le point de vue est le pôle sud de la sphère. Les points situés dans l'hémisphère nord sont projetés à l'intérieur du cercle de base, ceux situés dans l'hémisphère sud sont projetés à l'extérieur. S'ils sont trop proches du point de vue, leur projection se trouve très loin du cercle de base. Aussi on peut adopter la convention que les points situés dans l'hémisphère sud sont projetés en utilisant le pôle nord comme point de vue. On adopte alors des figurés différents suivant le point de vue utilisé.



Projection stéréographique utilisant le pôle sud comme point de vue.

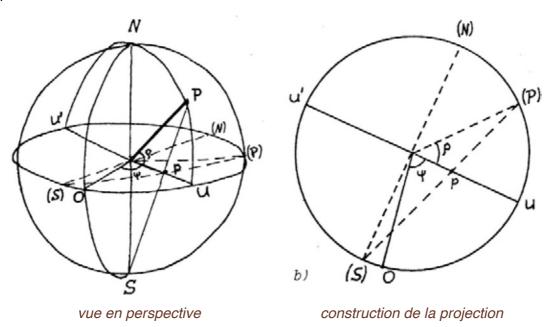


Projection stéréographique utilisant les deux pôles comme point de vue.

Constructions utilisées en projection stéréographique

Les divers problèmes de constructions sont basés sur le principe du rabattement. Prenons l'exemple le plus simple, celui de la projection d'un point P dont on connaît les coordonnées. Ces dernières sont semblables à celles utilisées pour situer un lieu sur le globe terrestre : on a l'angle ψ , comparable à la longitude, - angle entre la trace du méridien d'origine choisi arbitrairement et le méridien du point P et l'angle ρ , comparable à la latitude, qui est la hauteur angulaire du point P au-dessus du cercle équatorial.

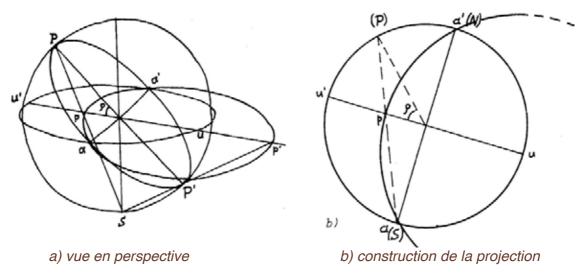
La figure ci-dessous montre la perspective et la construction de la projection. Sur la projection on dessine la trace du méridien d'origine O. On dessine ensuite la trace du méridien du point P, qui se trouve à la distance angulaire ψ de O. La prolongation de cette dernière droite coupe le cercle de base en uu'. On effectue alors un rabattement, c'est à dire qu'on fait pivoter le grand cercle uPNu' autour de la droite uu'. Sur la projection le point N vient en (N), le point P en (P) et le pôle S en (S). On peut alors tracer l'angle ρ qui se trouve maintenant dans le plan du dessin grâce au rabattement. On trace ensuite une droite entre (P) et le point de vue (S) et on trouve le point p, projection de P. Comme il se trouve sur l'axe de rotation, situé lui-même dans le plan de projection, la rotation du plan uPNu' le laisse invariant.



Projection d'un point P dont on connaît les coordonnées y et r.

Projection d'un grand cercle

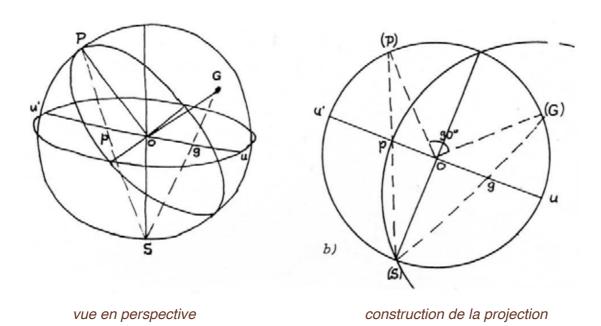
C'est un problème qui se pose très souvent. Nous savons que la projection d'un cercle est un cercle. Il nous suffit donc de trouver la projection de trois points du grand cercle. Examinons la figure suivante : nous cherchons à construire la projection du grand cercle aPa'P'. Ce grand cercle coupe le plan de projection en a et a' qui sont déjà deux des trois points recherchés. Prenons le point P, hauteur maximum du grand cercle qui se trouve à l'intersection de celui-ci avec la normale à la droite aa'. Dans le plan de projection la trace de la droite PP' est uu'. Elle est normale à aa'. Un rabattement du plan uPu' autour de uu' amène P en (P) et S en (S). On peut construire alors la projection p de P. Il ne reste plus qu'à construire le grand cercle qui passe par les points a, p et a'.



Projection d'un grand cercle d'inclinaison ρ.

Projection du pôle d'un grand cercle

Un grand cercle découpe dans la sphère un plan qu'on peut représenter par son pôle G, intersection avec la sphère de la normale au grand cercle passant par le centre de la sphère. On voit, sur le dessin suivant, comment on obtient la projection du pôle G. Dans le rabattement effectué autour de la droite uu', on trace la normale à OP. On obtient le point (G) dont la projection g est celle du pôle du grand cercle.



Projection du pôle d'un grand cercle.

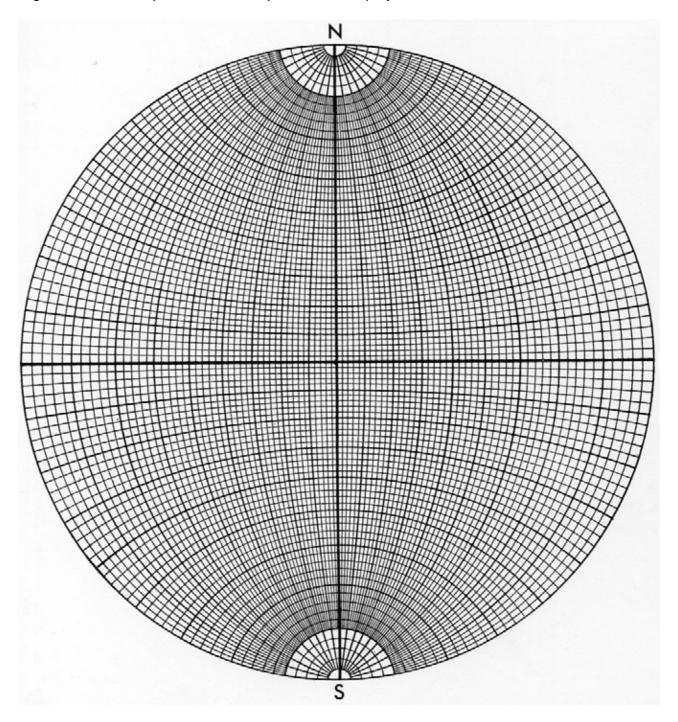
Il faut remarquer que la projection du pôle du grand cercle ne correspond pas au centre géométrique du cercle projeté!

Les autres problèmes, tracés de petits cercles ou distances angulaires, ne sont guère plus compliqués, et les constructions qu'ils exigent sont toujours basées sur le principe du rabattement.

Pour faciliter les constructions, divers auteurs ont proposés des canevas dont le plus connu est celui de Wulff II consiste en une série de grands cercles nord-sud, construits de deux en deux degrés, recoupés par des petits cercles parallèles à l'équateur.

Le canevas de Wulff

Les constructions s'effectuent sur un papier calque sous lequel on a placé le canevas de Wulff. On place une punaise au centre du canevas, par-dessous, pointe en haut. La pointe traverse le papier calque qu'on peut faire tourner ainsi autour du centre de la construction. Ce canevas permet de mesurer immédiatement les distances angulaires à partir du centre de la projection ou du cercle de base. Il permet encore de tracer n'importe quel grand cercle et de mesurer une distance angulaire entre deux points situés n'importe où sur la projection.



Canevas de Wulff.

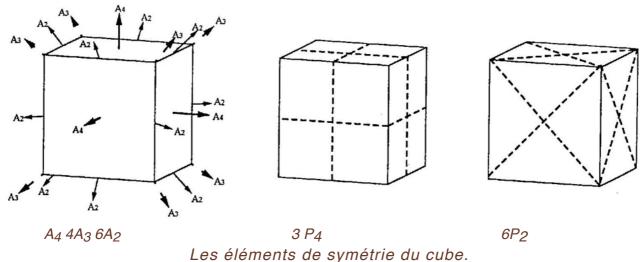
V. Les systèmes cristallins

Chaque système cristallin se subdivise en plusieurs classes dont une, l'holoédrie, présente l'ensemble des éléments de symétrie du système, et dont les autres, les hémiédries, ou même les tétartoédries, ne possèdent que la moitié ou le quart de ces éléments. Nous verrons plus loin les causes des ces différences.

Dans ce chapitre, nous nous proposons, en nous aidant de la projection stéréographique, de rechercher toutes les formes cristallines possibles de l'holoédrie de chaque système et de voir quelle est l'évolution de ces formes dans les classes mériédriques et tétartoédriques. Cette recherche peut être appliquée systématiquement au trente-deux classes de symétrie. Ce travail est fastidieux, aussi nous nous limiterons à quelques classes intéressantes et laisserons au lecteur le soin de faire ce même travail pour les autres classes, s'il en éprouve l'envie!

Système cubique

L'holoédrie est caractérisée par la formule 3A4 43 6A2 C 3P4 6P2. C'est celle du cube, qui est la forme primitive à partir de laquelle on peut reconstituer toutes les autres formes du système.

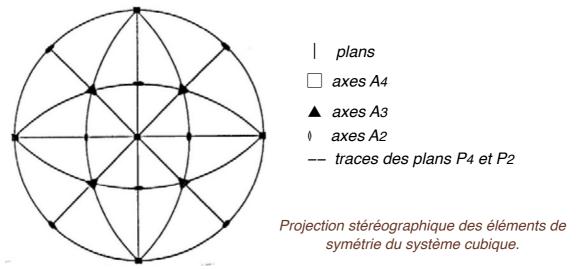


Imaginons ce cube au centre d'une sphère et plaçons les divers opérateurs de symétrie sur la projection stéréographique (p. 31). Les axes A4 percent la sphère, l'un au pôle Nord, les deux autres à l'équateur. La projection du premier se trouve au centre du cercle de base, celles des deux autres sur le cercle lui-même. Les deux axes A2 horizontaux sortent aussi sur le cercle de base, à 45° des précédents. Le plan P4 horizontal est confondu avec l'équateur de la sphère, c'est à dire avec le cercle de base lui-même. Les autres plans P4 découpent sur la sphère des grands cercles verticaux dont les projections sont des droites sur le cercle de base. Les deux plans P2 verticaux découpent aussi des grands cercles verticaux dont les projections sont des droites placées à 45° de celles des plans P4. Les quatre autres plans P2 découpent dans la sphère des grands cercles inclinés à 45° dont les projections sont des cercles aisés à construire (voir chapitre précédent).

Les axes A_3 , (en réalité des axes inverses $A^{6/3}$) se trouvent à l'intersection de trois plans P_2 , et les quatre axes A_2 inclinés sont aux intersections des plans P_2 et P_4 .

Notons encore que les axes de coordonnées utilisés dans le système cubique sont confondus avec les axes de symétrie A4.

Nous allons étudier successivement toutes les formes dont les faces sont perpendiculaires aux axes de symétrie, puis parallèles à ces mêmes axes, et enfin la forme dite "oblique" dont les faces n'ont pas d'orientation privilégiée vis à vis des opérateurs de symétrie.



La forme dont les faces sont normales aux axes A4 est le cube, ou hexaèdre. Les faces sont aussi perpendiculaires aux axes de coordonnées. Leur notation générale est {001}¹.

Par permutation on obtient bien les indices des six faces :

Sur la projection stéréographique, les projections des pôles des faces du cube sont confondues avec celles des axes A₄.

Par un raisonnement analogue nous obtenons l'octaèdre, dont les faces sont normales aux axes A_3 , puis le dodécaèdre rhomboïdal², dont les faces sont normales aux axes A_2 . Les projections des faces de ces diverses formes sont confondues avec celles des axes auxquels elles sont perpendiculaires.

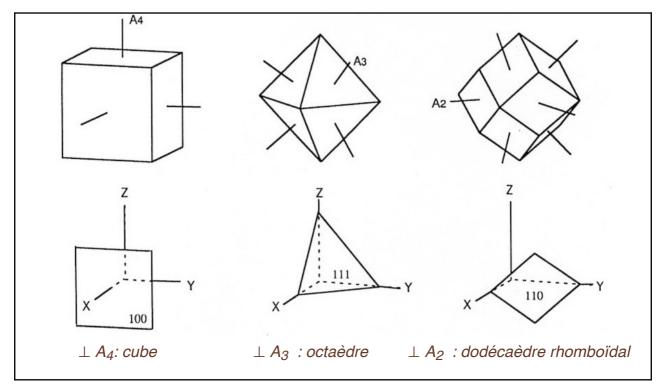
La recherche des formes parallèles aux axes s'effectue de la manière suivante : on place sur la projection stéréographique le pôle d'une face parallèle à un axe, l'axe A4 vertical, par exemple. Puisque le cercle de base est le lieu des pôles de toutes les faces verticales (donc parallèles à A4) on peut placer ce pôle a n'importe où sur ce cercle. Ce point est alors répété par tous les opérateurs de symétrie présents. On obtient ainsi les 24 faces du cube pyramidé. De la même manière on obtient les 24 faces de l'octaèdre pyramidé (appelé aussi triakisoctaèdre) ou du trapézoèdre, en cherchant les formes dont les faces sont parallèles à A2. Le fait qu'on obtienne deux formes différentes dépend de l'endroit où l'on a disposé la première face.

Enfin, si l'on place le pôle d'une face d'une manière non privilégiée vis à vis des opérateurs de symétrie, on obtient un solide à 48 faces, l'hexakisoctaèdre. C'est ce dernier qui détermine, par son nombre de faces, la multiplicité M de la classe de symétrie.

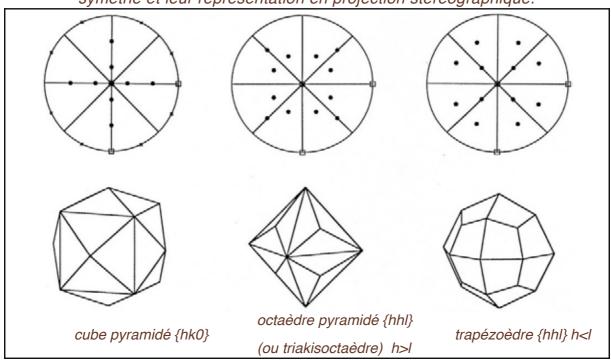
¹ les indices mis entre parenthèses accolades signifient que toutes les permutations doivent être effectuées pour trouver les indices particuliers de chaque face. C'est le symbole général de la forme cristalline.

² L'adjectif "rhomboïdal" qualifie la forme de la face, un rhombe, mot grec signifiant "losange".

Formes perpendiculaires aux axes de symétrie du système cubique, et leur notation et leur orientation vis-à-vis des axes de coordonnées.



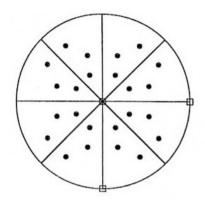
Holoédrie du système cubique : formes parallèles aux axes de symétrie et leur représentation en projection stéréographique.

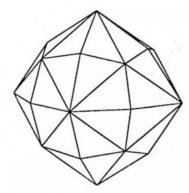


Formes	cristallines	de	<i>l'holoédrie</i>	du	système	cubique

Orient.	forme	indices	М
⊥ <i>A</i> 4	cube	{100}	6
⊥ <i>A</i> 3	octaèdre	{111}	8
⊥ A2	dodécaèdre rhomboïdal	{110}	12
//A4	cube pyramidé	{hk0}	24

orientation	forme	indices	М
//A2(entre A2 et A3)	octaèdre pyramidé	{hhl} h>l	24
//A2 (entre A3 et A4)	trapézoèdre	{hhl} h <l< td=""><td>24</td></l<>	24
oblique	hexakisoctaèdre	{hkl}	48



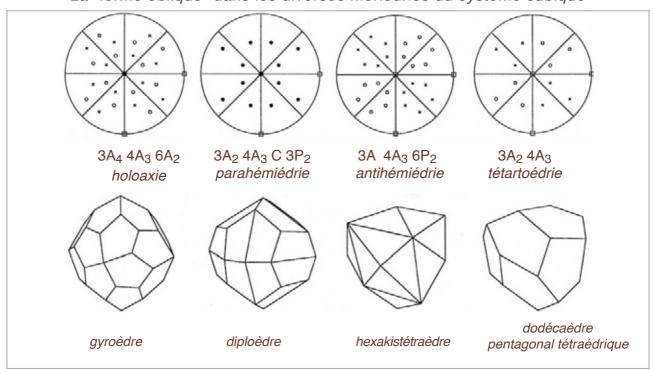


L'hexakisoctaèdre {hkl}, la forme "oblique" de l'holoédrie du système cubique, et sa projection stéréographique.

Les mériédries

Le principe de la recherche des formes cristallines des classes hémiédriques est le suivant: sur une projection stéréographique des opérateurs de symétrie de l'holoédrie du système cubique, figurés en traits fins, on marque en couleur ou en traits gras les opérateurs encore présents de la classe considérée. On procède ensuite de la même manières que pour l'holoédrie.

La "forme oblique" dans les diverses mériédries du système cubique



La figure ci-dessus montre comment se comporte la "forme oblique" dans les trois mériédries et dans la tétartoédrie du système cubique. La forme oblique est la seule qui soit toujours atteinte par une diminution de symétrie.

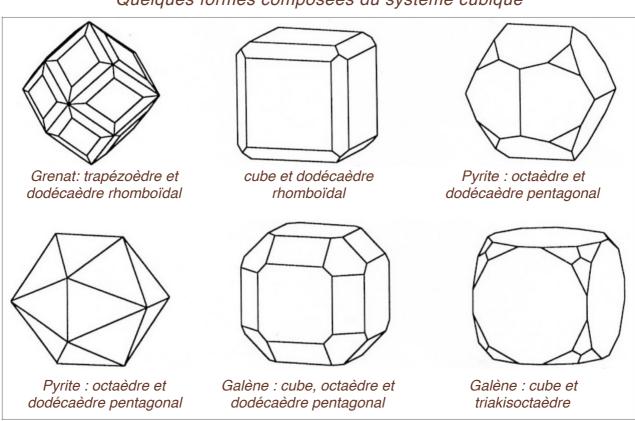
Le tableau de la page 19 décrit toutes les formes simples de l'holoédrie et des mériédries du système cubique. En l'examinant, on constate que certaines formes ne sont pas altérées par une diminution de symétrie. Ainsi, le cube et le dodécaèdre rhomboïdal sont des formes qui subsistent dans les cinq classes mérièdres. Ces formes ne sont pas révélatrices de la classe à laquelle appartient un minéral, contrairement à la forme oblique qui est caractéristique de chacune des classes. La pyrite se présente souvent en cubes, bien qu'elle appartienne à la parahémiédrie de formule $3A_2 \, 4A_3 \, C \, 3P_2$.

Mais si on observe plus attentivement un cube de pyrite, on remarque que ses faces sont souvent striées. Comme la symétrie doit rendre compte non seulement de la forme, mais aussi des propriétés physiques, il faut donc admettre que les axes normaux aux faces ne peuvent plus être des axes A4, mais des axes A2. Les axes A3 ne sont pas altérés, mais les trois plans P4 deviennent des plans P2 et les anciens plans P2 disparaissent!

Formes composées

Jusqu'à présent nous n'avons parlé que des formes simples. Mais le plus souvent les minéraux sont composés par l'association de plusieurs formes simples. Les orientations des faces restent évidemment les mêmes, mais leur contour se modifie par les troncatures provoquées par les autres formes. Ainsi les faces du dodécaèdre pentagonal n'auront plus nécessairement un contour pentagonal!

Quelques formes composées du système cubique



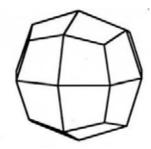
Les grenats montrent très souvent la combinaison du trapézoèdre et du dodécaèdre rhomboïdal. La pyrite présente les combinaisons du cube, de l'octaèdre et du dodécaèdre pentagonal. Parfois même, suivant le développement relatif des faces, la combinaison de l'octaèdre et du dodécaèdre pentagonal font croire à un solide à 20 faces, constitué en réalité de 8 faces triangulaires équilatérales (l'octaèdre) et de 12 faces triangulaires isocèles (le dodécaèdre). Quant à la galène, elle présente parfois les combinaisons cube et octaèdre ou cube et triakisoctaèdre-.

A propos de la notation des faces

Lorsqu'on donne les indices sous la forme générale {hhl} (cas du trapézoèdre), cela signifie que les nombres h et l peuvent être remplacés par des nombres quelconques (en respectant, dans ce cas particulier, la règle h>l). On pourrait donc avoir en réalité {112} ou {113}. La forme obtenue reste toujours celle d'un trapézoèdre, mais l'orientation des faces est un peu différente.

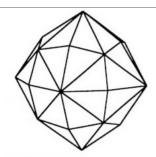
La nomenclature des formes cristallines suit plus ou moins une logique basée sur le nombre des faces et la forme de leur contour (dans les cas de formes simples). Ainsi dodécaèdre signifie solide à 12 faces. On le qualifie de pentagonal lorsque la forme de ses faces est pentagonale. De même, on utilise les qualificatifs rhomboïdal (= losangique) ou deltoïde (en forme de delta). On a recours aussi à des préfixes grecs, triakisoctaèdre par exemple, qui signifie pyramide à trois pans sur les faces d'un ancien octaèdre. On utilise encore des noms particuliers : trapézoèdre (24 faces en forme de trapèze), gyroèdre, ou diploèdre.

Trapézoèdres d'indices différents

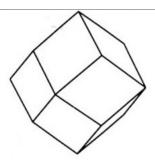


trapézoèdre (113)

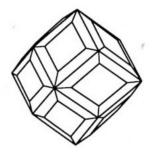
Formes cristallines de quelques minéraux cubiques.



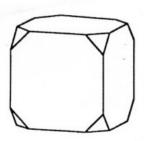
Diamant hexakisoctaèdre



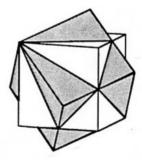
Grenat dodécaèdre rhomboïdal



Grenat dodécaèdre rhomboïdal et hexakisoctaèdre

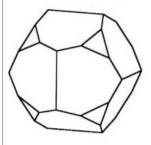


Fluorine cube et octaèdre

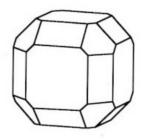


Fluorine deux cubes maclés par interpénétration

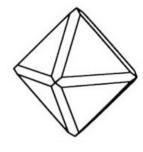
Tétraédrite tétraèdre, cube et triakistétraèdre



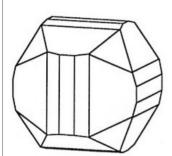
Pyrite dodécaèdre pentagonal et octaèdre



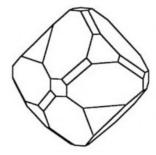
Pérowskite cube, octaèdre et dodécaèdre rhomboïdal



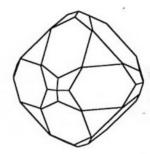
Cuprite dodécaèdre rhomboïdal et octaèdre



Cobaltine cube, octaèdre et deux dodécaèdres pentagonaux



Blende dodécaèdre rhomboïdal, cube, octaèdre et trapézoèdre



Magnétite dodécaèdre rhoboïdal, octaèdre et trapézoèdre

Nomenclature des formes des autres systèmes cristallins

Les systèmes autres que le système cubique utilisent une nomenclature commune assez simple. Ils présentent des éléments de symétrie moins nombreux. Cela entraîne une diminution du nombre des faces, et implique que certaines formes simples ne sont plus fermées (faute d'un nombre suffisant de faces) et qu'elles ne peuvent exister que combinées avec d'autres formes simples. Par exemple, une pyramide serait une forme ouverte s'il n'y avait pas la base. De même, un prisme ne saurait exister sans la présence des ses bases. La position de l'axe de coordonnée Z coïncide avec l'axe principal des systèmes quadratique, hexagonal, rhomboédrique, et avec un des axes A2 dans le système orthorhombique. Dans le système monoclinique, c'est l'axe Y qui coïncide avec l'axe A2.

Noms des formes simples des autres systèmes cristallins :

Pinacoïdes deux faces parallèles {001}, {010}, {100}, {h0l}, etc..).

Prisme ensemble de faces parallèles à une même direction, généralement l'axe

principal {hk0}.

Bipyramide deux pyramides accolées par leur base. Les sections des prismes, py-

ramides et bipyramides peuvent être trigonales, tétragonales (ou quadratiques), hexagonales, ditrigonales, ditétragonales ou encore dihexa-

gonales (cf. figure page suivante).

Sphénoïde (ou aussi bisphénoïde) déformation tétragonale ou orthorhombique du

tétraèdre.

Disphénoèdre deux pans sur chaque face d'un sphénoèdre.

Trapézoèdre bipyramide dont une des pyramides a tourné d'un angle quelconque

autour de l'axe principal.

Rhomboèdre trapézoèdre trigonal dont une des pyramides a tourné de 60° par rap-

port à l'autre. On peut le définir aussi comme un parallélépipède dont

les faces ont des formes de rhombe (= losange).

Scalénoèdre ditrigonal bipyramide ditrigonale dont une des pyramides a tourné de 60° par rap-

port à l'autre (ou rhomboèdre avec deux pans sur chaque face).

Pédion face unique non répétée par les opérateurs de symétrie (base d'une py-

ramide, par exemple).

Dôme prisme réduit à deux faces non parallèles. Un plan de symétrie engendre

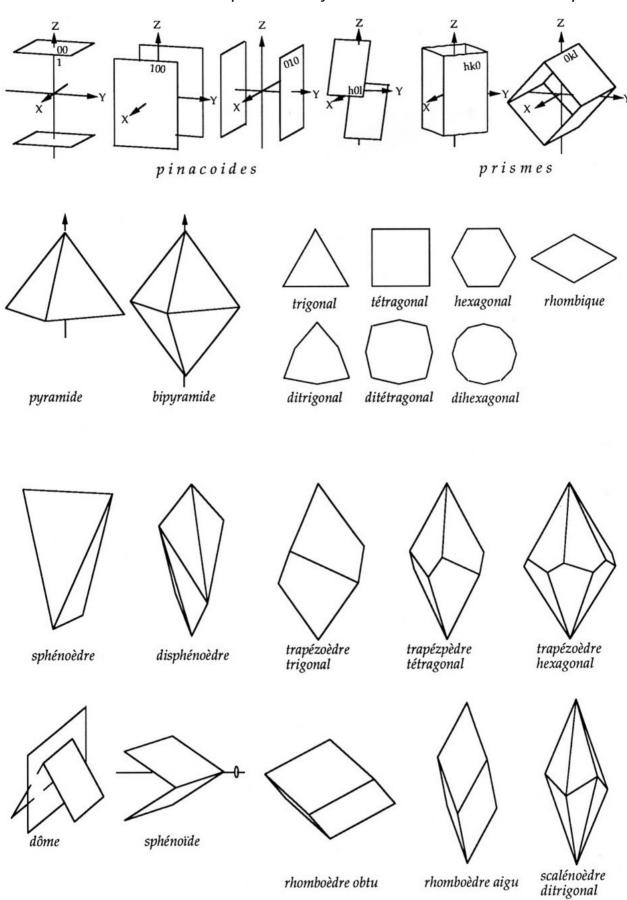
la deuxième face à partir de la première. Parfois aussi le terme de dôme est utilisé dans les systèmes de basse symétrie pour des prismes paral-

lèles aux axes X ou Y.

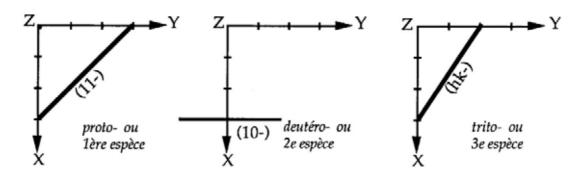
Sphénoïde appellation particulière, dans le système monoclinique, d'un dôme en-

gendré par l'axe binaire.

Formes cristallines simples des systèmes cristallins non cubiques.



On attribue parfois des préfixes aux prismes, pyramides et bipyramides pour préciser leur position vis-à-vis des axes de coordonnées X et Y. Ce sont les préfixes proto-, deutéro- et trito- qui indiquent respectivement qu'une face coupe les axes précités à des distances égales (hhl), qu'elle est parallèle à l'un d'entre eux (h0l), ou que son orientation est quelconque (hkl). En lieu et place de ces préfixes, certains auteurs utilisent les expressions "de première espèce", "de deuxième espèce", ou "de troisième espèce".

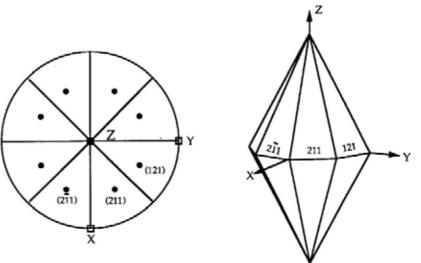


Orientation des prismes, pyramides et bipyramides vis-à-vis des axes de coordonnée

Système quadratique

La recherche des formes simples des diverses classes s'effectue de la même manière que pour le système cubique. Le tableau de la page 44 montre toutes ces formes en fonction de leur orientation vis-à-vis des opérateurs de symétrie. La figure ci-contre montre la projection stéréographique des plans et axes de symétrie du système.

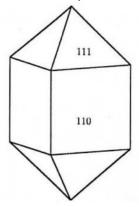
Il faut noter cependant que les préfixes proto- deutéro- et tritone sont utilisés que si on veut exprimer précisément la position d'un prisme ou d'une bipyramide par rapport au réseau cristallin du minéral. Ainsi, sur les dessins suivants, on sait qu'il s'agit d'une due-téroforme, uniquement parce qu'on connaît l'orientation des formes du zircon par rapport à ses paramètres cristallographiques. Mais si on présente un minéral inconnu avec ces mêmes formes, rien à priori ne permet d'affirmer qu'il s'agisse de protoou de deutéroforme.



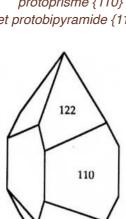
Projection stéréographique des éléments de symétrie du système quadratique et des pôles des faces de la bipyramide ditétragonale, forme oblique de l'holoédrie {hkl}.

On peut voir les deux sphénoèdres conjugués (112) et (112) de la chalcopyrite, dont les faces montrent des développements très différents. Pour la wulfénite, on remarque l'association d'un prisme et d'une tritobipyramide. Les éléments binaires ont disparu. Il s'agit de la classe A₄CP₄.

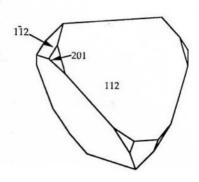
Quelques formes cristallines du système quadratique.



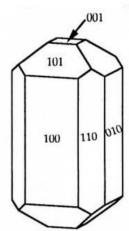
Zircon
protoprisme {110}
et protobipyramide {111}



Wulfénite protoprisme {110} et tritobipyramide {122}



Chalcopyrite deux sphénoèdres conjugués inégalement développés, {112} et {112}, et deutérobipyramide {201} peu développée.



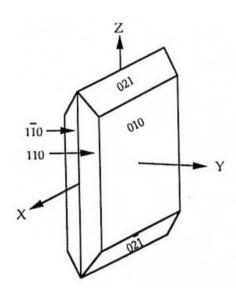
Vésuvianite prismes {100} et {110}, deutérobipyramide {101} et pinacoïde {001}

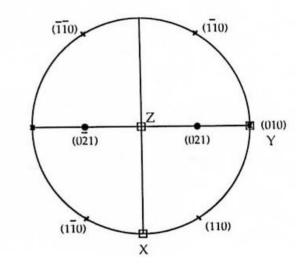
Système orthorhombique

Les minéraux orthorhombiques ont trois axes de symétrie orthogonaux qui coïncident avec les axes de coordonnées. Ils sont souvent allongés selon un de ces axes de symétrie. Celui-ci est alors choisi comme axe Z. Les axes A'2 et A"2 jouent alors les rôles de X et Y.

En principe il ne devrait pas exister d'axe principal. Cependant, à cause de l'allongement ou de l'aplatissement fréquent des minéraux appartenant à ce système, on continue, par habitude, de nommer "prisme" la forme dont les faces sont parallèles à A2 et "dôme" les formes dont les faces sont parallèles aux axes A'2 et A"2. La figure suivante montre la projection stéréographique des éléments de symétrie ainsi que les pôles des faces de la cérusite, minéral appartenant à l'holoédrie du système.

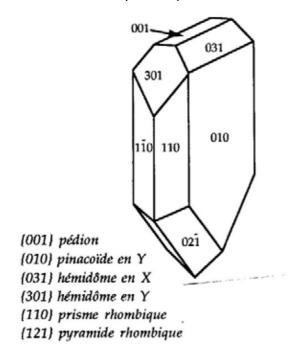
Projection stéréographique de la cérusite (PbCO3).



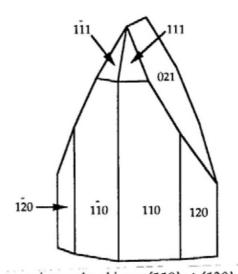


{110} prisme orthorhombique {010} pinacoïde en Y {021} dôme (ou prisme) en X holoédrie : A2 A'2 A"2 C P2 P'2 P"2

Les figures suivantes montrent deux exemples de minéraux orthorhombiques : l'hémimorphite, Zn4Si2O7(OH)2.H2O et la topaze, Al2SiO4(OH,F)2. L'hémimorphite appartient à la classe A2P'2P"2, alors que la topaze est considérée comme possédant une symétrie holoèdre.



Hémimorphite, classe A₂P₂P"₂



prismes rhombiques {110} et {120} dôme en X {021} pyramide rhombique {111}

Topaze, holoédrie

Formes simples du système quadratique

		⊥A4 {001}	LA2 {110}	LA'2 {100}	// A4 {hk0}	// A2 {hhl}	// A'2 {h0!}	oblique {hkl}
4/mmm	4/mmm A42A22A'2CP42P22P'2 pinacoide base	pinacoïde base	protoprisme tétragonal	deutéroprisme tétragonal	prisme ditétragonal	protobipyramide tétragonale	deuterobipyr. tétragonale	bipyramide ditétragonale
A22	A4 2A2 2A'2	ı		"	"	"		trapézoèdre tétragonal
42m	A4/2 2A 22P'2			"	*	*	sphénoèdre tétragonal	disphénoèdre tétragonal
4mm	A4 2P2 2P"2	pédion	*	"	a	protopyramide tétragonale	deutéropyramide tétragonale	pyramide ditétragonale
4/m	A4 C P4	pinacoïde base	*	ž.	tritoprisme tétragonal	protobipyramide tétragonale	deuterobipyr. tétragonale	tritobipyr. tétragonale
4	A4/2	*		ŧ	ŧ	protosphénoèdre tétragonal	deutérosphén. tétragognal	tritosphénoèdre tétragonal
4	A4	pédion	t	ŧ	t	protopyramide tétragonale	deutéropyramide tétragonale	tritopyramide tétragonale

Formes simples du système orthorhombique

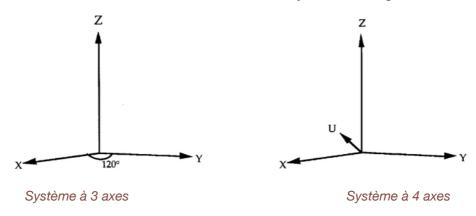
						The second secon		
		L A2 {100}	L A'2 (110)	A'2 {110} L A"2 {001} //A2 {hk0}	// A2 {hk0}	// A'2 {0ki}	// A"2 {h0l}	oblique {hkl}
7	mmm A2 A'2A"2 C P2 P'2P"2 pinacoïde base	pinacoïde base	pinacoïde en X pinacoïde en Y	pinacoide en Y	prisme orthorhombique	dôme en X	dôme en Y	bipyramide rhombique
222	A2 A'2 A"2	*	ž.		"	"	"	sphénoédre rhombique
mm2	A2 P'2 P"2	pédion				hémidôme	hémidôme	pyramide rhombique

Systèmes hexagonal et rhomboédrique

Le tableau de la page 48 montre toutes les formes des diverses classes de ces deux systèmes. On les étudie souvent ensemble, considérant alors le système rhomboédrique comme une hémiédrie du système hexagonal.

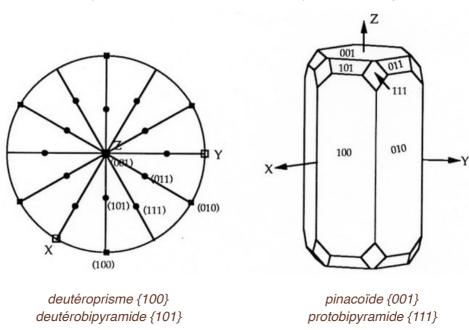
Pour ces deux systèmes on adopte un système d'axes de coordonnées où X et Y font entre eux un angle de 120° . Certains auteurs ajoutent un axe supplémentaire dans le plan horizontal, l'axe U, séparé de X et Y par un angle de 120° . Les indices des faces sont alors (hkil). La valeur de I peut être calculée à partir de I et I et I relation est I in I in

Les axes de coordonnées dans le système hexagonal



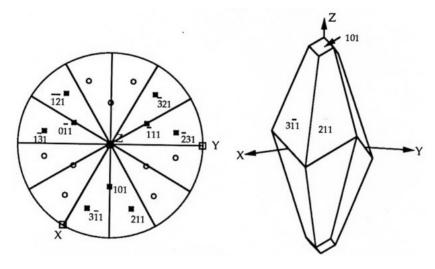
On voit ci-dessous la projection stéréographique des opérateurs du système, la position des axes de coordonnées ainsi qu'un cristal de béryl appartenant à l'holoédrie du système.

Le béryl, exemple de l'holoédrie du système hexagonal.



Le dessin suivant montre la projection stéréographique des éléments de symétrie du système rhomboédrique. En traits gras on a figuré la trace des plans de symétrie, en traits maigres la trace des axes de symétrie qui sont aussi les axes X, Y (et U). On a figuré aussi les pôles des faces du scalénoèdre ditrigonal {hkl}, une des nombreuses formes de la calcite.

Projection stéréographique d'une des formes de la calcite, un exemple de l'holoédrie du système rhomboédrique.

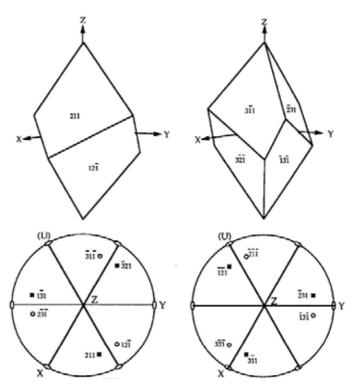


scalénoèdre ditrigonal {211} et rhomboèdre {101}

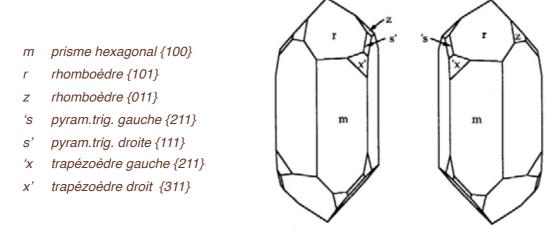
Il est intéressant de voir ce que devient ce scalénoèdre dans les autres classes, l'holoaxie A₃3A₂, par exemple. La disparition des plans de symétrie fait diminuer le nombre de faces de moitié. On voit, sur la fig. 5.22, que la face (211) n'est plus répétée en (311) comme elle l'était dans l'holoédrie. Nous obtenons une forme à 6 faces, le trapézoèdre. Mais si, au lieu d'avoir choisi la face (211) comme face quelconque, nous avions considéré plutôt la face (311) nous aurions obtenu un trapézoèdre orienté différemment. On remarque que ces deux trapoézoèdres ne sont pas superposables. On dit qu'ils sont énantiomorphes. On distingue ces deux trapézoèdres en les qualifiant de droit ou gauche. D'une manière identique nous avons une main droite et une gauche qui ne sont pas superposables.

Holoaxie du système rhomboédrique : apparence de la forme oblique.

trapézoèdre gauche et trapézoèdre droit



Certains minéraux sont tantôt droits, tantôt gauches. L'exemple le plus familier est celui du quartz.



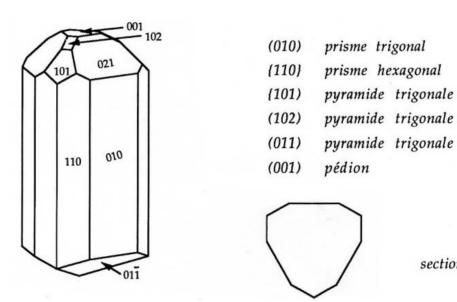
Quartz droit

Quartz gauche

section prismatique

La distinction entre les deux formes n'est macroscopiquement possible que si les faces du trapézoèdre sont présentes. Rappelons que ces deux formes sont dites énantiomorphes. Cela signifie qu'elles ne sont pas superposables mais que l'une d'entre elles est le miroir de l'autre (plan de symétrie). Un autre exemple intéressant est celui de la tourmaline :

Formes habituelles de la tourmaline :



Formes simples des systèmes hexagonal et rhomboédrique

		,				•		
		1A6 {001}	LA2 (100)	LA'2 {110}	// A6 {hk0}	// A2 {h0l}	// A'2 {hhi}	oblique {hkl}
6/mmm	6/mmm A63A23A'2CP63P23P'2 pinacoïde base	pinacoïde base	prisme hexagonal	prisme hexagonal	prisme dihexagonal	bipyramide hexagonale	bipyramide hexagonale	bipyramide dihexagonale
622	A63A23A'2	"	*	"	"	*	"	trapézoèdre hexgagonal
6m2	A33A2P33P'2	t	prisme trigonal	"	prisme ditrigonal	bipyramide trigonale	"	bipyramide trigonale
еши в	A63P23P'2	pédion	prisme hexagonal	"	prisme dihexagonal	bipyramide hexagonale	bipyramide hexagonale	bipyramide dihexagonale
<i>ш/9</i>	A6CP6	pinacoïde base	ŧ	*	prisme hexagonal	"	bipyramide hexagonale	bipyramide hexagonale
9	A3P3		prisme trigonal	prisme trigonal	Prisme trigonal	bipyramide trigonale	bipyramide trigonale	bipyramide trigonale
9	A6	pédion	prisme hexagonal	prisme hexagonal	prisme hexagonal	pyramide hexagonale	bipyramide hexagonale	pyramide hexagonale

onal	oèdre nal	nide	oèdre	nide nale
scalénoèdre ditrigonal	trapézoèdre trigonal	pyramide ditrigonale	rhomboèdre	pyramide trigonale
bipyramide hexagonale	bipyramide trigonale	bipyramide hexagonale	rhomboèdre	pyramide trigonale
rhomboèdre	"	pyramide trigonale	rhomboèdre	pyramide trigonale
prisme dihexagonal	prisme ditrigonal	"	prisme hexagonal	Prisme trigonal
prisme hexagonal	prisme trigonal	prisme hexagonal	"	prisme trigonal
prisme hexagonal	"	prisme trigonal	prisme hexagonal	prisme trigonal
pinacoïde base	"	pédion	pinacoïde base	pédion
A6/3 3A2C3P2	A33A2	A33P2	A6/3 C	A3
Зт	32	3m	က	က

Rappelons qu'on peut aussi exprimer la notation des faces à partir de 4 axes de coordonnées X, Y, U et Z. Les indices sont alors h, k, i, I. La valeur de i est alors liée à celles de h et k par la relation i = - (h+k.

Système monoclinique

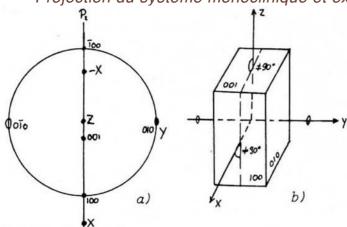
La diminution du nombre des opérateurs de symétrie entraîne un appauvrissement du nombre des formes qui se limitent à celles qui sont décrites dans le tableau ci-dessous.

Formes simples du système monoclinique	Formes	simples	du s	vstème	monocliniau
--	--------	---------	------	--------	-------------

		⊥ A2 {010}	// A2 {h0l}	oblique {hkl}
2/m	A2 C P2	pinacoïde	pinacoïde	prisme
2	A ₂	pédion	pinacoïde	sphénoïde
m	P2	pinacoïde	pédion	dôme

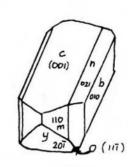
L'axe Y coïncide avec l'unique axe de symétrie, X et Z sont situés dans le plan de symétrie et ne sont plus normaux aux faces (100) et (001). Sur la projection stéréographique on place Z verticalement (au centre du cercle de base), X penchant en avant, sa projection se trouve à l'extérieur du cercle de projection. L'orthose, décrite dans l'exemple ci-dessous, appartient à l'holoédrie du système.

Projection du système monoclinique et exemple de l'orthose



Projection des éléments du système monoclinique. Le grand cercle est le lieu des faces parallèles à X.

Parallélépipède défini par les pinacoïdes {100}, {010} et {001}. Les trois arêtes définissent les axes X, Y et Z.

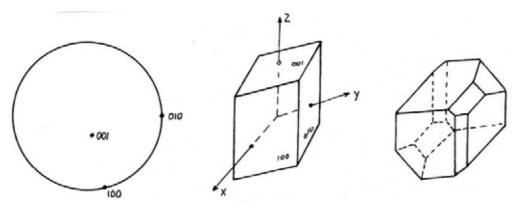


Formes de l'orthose : pinacoïdes {010}, {001} et {201} et prismes {110}, {130}, {021} et {111}.

Système triclinique

Les formes se réduisent à des pinacoïdes dans l'holoédrie et à des pédions dans la classe sans symétrie. Le parallélépipède triclinique, déterminé par les pinacoïdes {100}, {010} et {001} est orienté de telle manière que la face (010) soit située sur le cercle de base, à l'extrémité droite du diamètre équatorial horizontal, et que la face (100) vienne aussi sur le cercle de base, vers l'avant. La face (001) penche donc vers l'avant et sur la droite. Les axes X, Y, Z ne sont plus confondus avec les normales aux pinacoïdes. L'axe Z est vertical, les axes X et Y sont situés en des points quelconques de la projection.

Projection du système triclinique et exemple de l'axinite.



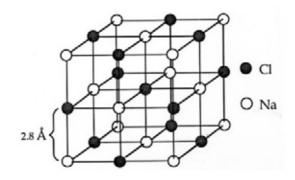
Parallélépipède défini par les pinacoïdes {100}, {010} et {001}. Les arêtes définissent les axes X, Y et Z.

Formes de l'axinite : pinacoïdes {010}, {001} et {201}, {110}, {130}, {021} et {111}.

VI. L'organisation des atomes

Jusqu'à présent, nous n'avons considéré que l'aspect extérieur des cristaux. Il est bien évident que la forme d'un cristal doit être le reflet de l'arrangement des atomes qui le constituent. Nous savons déjà que l'état cristallin est la conséquence de l'arrangement géométrique périodique des atomes. Comment donc pouvons-nous décrire ces arrangements?

Partons de l'exemple concret de la halite, le chlorure de sodium NaCl, plus connu encore sous le nom de sel de cuisine. Si nous faisons évaporer tranquillement une solution de NaCl, nous assistons à la formation de petits cristaux plus ou moins bien développés, aux faces orthogonales et qui tendent à former des cubes. Ce minéral cristallise donc dans le système cubique. La première idée qui vient à l'esprit est que, selon toute vraisemblance, les atomes de chlore et de sodium se disposent alternativement sur des rangées parallèles aux arêtes d'un cube.



Cristaux cubiques de halite et position des atomes dans la structure

Essayons tout d'abord d'exprimer la distance qui sépare un atome de chlore d'un atome de sodium. Ne tenons pas compte des rayons atomiques et calculons la distance qui sépare leurs centres. Connaissant le nombre d'Avogadro¹, le poids spécifique de la halite (2.16 gr/cm3) ainsi que son poids moléculaire (58.5 gr.), on obtient :

nombre d'atomes dans un cm³ =
$$\frac{2 \times 6.02 \times 10^{23} \times 2.16}{58.5}$$
 = 44.5×10^{21} distance entre deux atomes = $\frac{1}{3\sqrt{44.5 \times 10^{21}}}$ = 2.8×10^{-8} cm

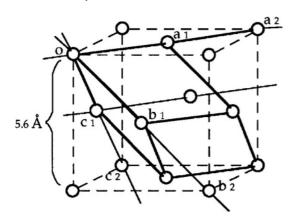
Comment pouvons-nous décrire, en termes simples, la configuration atomique² de la halite ? Manifestement, on constate la répétition du groupement Na-Cl selon une loi à découvrir. Pour ce faire, remplaçons chaque Na-Cl par un point. On peut, par exemple, ne représenter que les atomes de sodium, avec cette convention qu'il faudra ajouter chaque fois un atome de chlore à 2.8 Å au-dessus du sodium pour reconstituer la structure. Les schémas suivants représentent donc des ensembles de points, chacun d'entre eux remplaçant un groupe Na-Cl. On appelle habituellement ces points des nœuds.

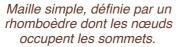
¹ C'est le nombre d'atomes contenus dans un atome-gramme ou de molécules contenues dans une molécule-gramme (dans le cas présent 58.5 gr). Ce nombre vaut 6.02 × 1023.

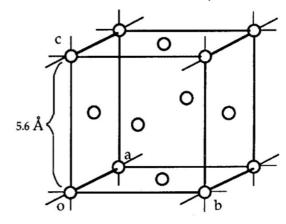
² Représentation d'une structure atomique dans laquelle les atomes sont figurés par des points.

Dans les deux schémas, nous avons essayé de représenter graphiquement une loi de répartition des noeuds dans l'espace au moyen d'un réseau de droites. Pour construire un tel réseau¹, il suffit de relier un nœud d'origine à trois autres noeuds non situés en ligne droite.

Représentation du schéma de répartition des noeuds dans l'espace.







Maille multiple, définie par un cube dont les nœuds occupent les sommets et le milieu des faces.

Dans le premier exemple, nous avons relié le nœud o avec les nœuds les plus proches a_1 , b_1 et c_1 . On obtient trois directions. En prolongeant ces droites, on trouve d'autres nœuds indéfiniment répétés à égale distance les uns des autres. Ce réseau de droites détermine un parallélépipède, ici un rhomboèdre, dont les arêtes forment entre elles des angles de 60° et dont les longueurs sont égales à $5.6 \times J2/2$ Å.

On peut maintenant définir complètement la configuration atomique de la halite de la manière suivante :

La halite est constituée d'un groupement de deux atomes, chlore et sodium, répétés périodiquement aux nœuds d'un réseau déterminé par un rhomboèdre, dont les arêtes forment entre elles des angles de 60° et dont les longueurs sont égales à $5.6 \times \sqrt{2/2}$ Å.

Motif, réseau et maille élémentaire

On nomme habituellement motif, le plus petit groupement d'atomes (ici Na et Cl) qui, indéfiniment répété dans les trois directions de l'espace, reconstitue tout le cristal.

On nomme réseau, l'ensemble des droites passant par les nœuds et qui constituent le schéma de répétition des motifs.

On nomme maille élémentaire, le parallélépipède élémentaire qui, par juxtaposition dans les trois directions de l'espace, reconstitue le réseau.

La maille élémentaire que nous venons de proposer pour la halite, le rhomboèdre, ne renferme qu'un seul nœud. En effet chaque nœud situé sur un sommet est partagé avec sept autres mailles élémentaires. Il ne compte donc que pour un huitième. Il s'agit d'une maille simple ou maille primitive. Elle présente l'inconvénient de ne pas refléter la symétrie cubique du cristal.

Nous appellerons dorénavant réseau l'ensemble des droites qui décrivent les alignements de nœuds.

Sur le deuxième schéma, nous avons choisi une autre maille, plus grande que la précédente. Elle contient 4 nœuds (les nœuds des faces sont partagés avec la maille voisine). On dit que c'est une maille multiple, de multiplicité 4. On la définit comme une maille à faces centrées. Elle permet également de décrire la configuration atomique de la halite :

La halite est constituée d'un motif de deux atomes, le chlore et le sodium, répété périodiquement aux noeuds d'un réseau déterminé par un cube à faces centrées, dont les arêtes sont égales à 5.6 Å.

Cette dernière définition est beaucoup plus commode que la précédente, car cette maille élémentaire multiple possède la symétrie du cristal, ce qui n'était pas le cas de la maille rhomboédrique. C'est le réseau cubique à faces centrées. Cela signifie qu'on trouve des nœuds aux sommets et au milieu des faces de la maille.

Le réseau

C'est un arrangement tridimensionnel de nœuds tel, qu'aucun de ces nœuds ne peut être distingué d'un autre : autour de chaque nœud existe exactement le même environnement.

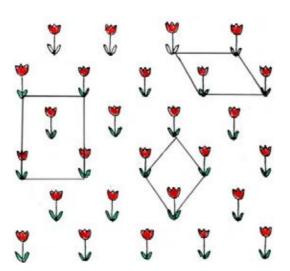
Si on relie deux nœuds par une droite, on trouve, de part et d'autre de ces noeuds et à égales distances sur cette droite, d'autres nœuds identiques. Une telle droite est une rangée réticulaire. Un réseau renferme une infinité de rangées réticulaires.

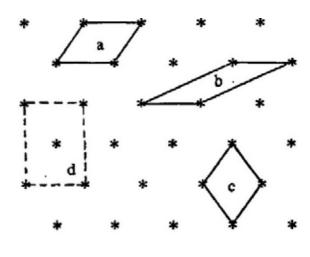
De même, par trois nœuds non en ligne droite on peut faire passer un plan qu'on appelle un plan réticulaire. Il existe également une infinité de plans réticulaires.

Nous constatons qu'on peut donc toujours reconstituer un réseau par juxtapositions parallèles sans interstices d'un parallélépipède, la maille élémentaire.

Prenons l'exemple familier d'un papier peint : il est constitué d'un motif, ici une fleur, répété selon une certaine loi géométrique. On peut remplacer les motifs par des points. Ce sont les noeuds d'un réseau à deux dimensions. Il est donc possible de générer ce réseau par juxtaposition de diverses mailles élémentaires. Les mailles a, b et c sont des mailles simples, alors que la maille d est une maille multiple.

Le papier peint, un exemple de réseau bidimensionnel avec motif et maille.





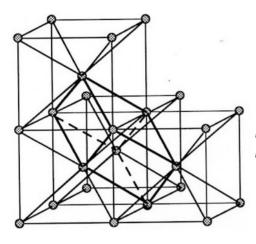
Du point de vue de la symétrie, les mailles a et b ne possèdent qu'un seul point de rotation d'ordre 2. Les mailles c et d possèdent en plus deux lignes de réflexion. Par ailleurs, les côtés de la maille d font entre eux des angles droits. C'est probablement la maille multiple d qui sera la plus commode à l'emploi. Pour effectuer le choix de la maille élémentaire la plus convenable, on se base sur les règles suivantes :

- 1. la forme de la maille élémentaire doit correspondre aux repères d'axes (axes de coordonnées) dicté par la symétrie du cristal,
- 2. l'origine de la maille élémentaire est prise en un point remarquable du réseau, un centre de symétrie, par exemple,
- 3. tout en tenant compte de la règle 1, on choisit la maille élémentaire de façon à rendre son volume minimal,
- 4. parmi les possibilités restantes, on choisit celle qui donne les paramètres (côtés de la maille) les plus petits.
- 5. En suivant ces règles, on constate que c'est la maille multiple à faces centrées qu'il faut choisir, dans l'exemple de la halite.
- 6. En se conformant à ces règles et en cherchant toutes les possibilités de mailles élémentaires, on en trouve quatorze. Ce sont les 14 modes de réseau de Bravais². On trouve des mailles simples et des mailles multiples. [voir le tableau des modes de Bravais à la page 51]

Il est remarquable de constater que toute maille possède la symétrie de l'holoédrie d'un des sept systèmes cristallins. Trois sont cubiques, une hexagonale, deux quadratiques, une rhomboédrique, quatre orthorhombiques, deux monocliniques et une triclinique.

Il faut noter qu'on peut toujours remplacer, bien que ce soit très malcommode, une maille multiple par une maille simple. En lieu et place de la maille cubique centrée, on peut choisir une maille simple rhomboédrique dont les arêtes forment des angles de 109° 28'. La maille cubique à faces centrées peut être remplacée par un rhomboèdre dont les arêtes forment des angles de 60°. Remarquons en passant que le cube simple est un cas particulier du rhomboèdre!

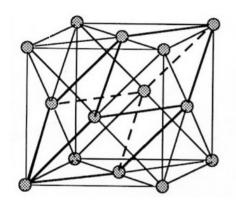
Une maille hexagonale peut être remplacée par un prisme droit à base à base rhombique, l'angle obtus du rhombe (losange) étant de 120°.



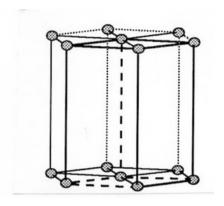
Maille cubique centrée et maille rhomboédrique simple.

Dans un monde à deux dimensions, on ne parle pas d'axes ou de plans, mais de points de rotation et de lignes de réflexion.

² Auguste Bravais, 1811-1863, officier de marine et naturaliste français.



Maille cubique à faces centrées et maille rhomboédrique simple.



Maille multiple hexagonale et maille simple rhombique.

Pour décrire complètement une maille, il faut indiquer si elle est simple ou multiple, préciser les longueurs de ses arêtes ainsi que les angles qu'elles font les unes par rapport aux autres. Le nombre

Caractéristiques des diverses mailles élémentaires

Symétrie	angles entre les arêtes	long. arêtes	Nombre de paramètres
cubique	$\alpha = \beta = \gamma = 90^{\circ}$	a = b = c	1
quadratique	$\alpha = \beta = \gamma = 90^{\circ}$	<i>a</i> = <i>b</i> ≠ <i>c</i>	2
orthorhombique	$\alpha = \beta = \gamma = 90^{\circ}$	a ≠ b ≠ c	3
hexagonale*	$\alpha = \beta = 90^{\circ} \ \gamma = 120^{\circ}$	a = b ≠ c	2
rhomboédrique*	$\alpha = \beta = \gamma \neq 90^{\circ}$	<i>a</i> = <i>b</i> ≠ <i>c</i>	2
monoclinique	$\alpha = \beta = 90^{\circ} \ \gamma \neq 90^{\circ}$	a ≠ b ≠ c	4
triclinique	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	a ≠ b ≠ c	6

^{*} dans le cas du choix d'une maille simple

de paramètres à déterminer varie entre un pour la maille cubique, et six pour la maille triclinique.

Il est intéressant de comparer ces mailles avec les axes de coordonnées qui nous ont servi à indexer les faces des cristaux. Les directions des axes X, Y Z correspondent à celles des arêtes des mailles élémentaires, et les unités relatives choisies sur ces axes sont proportionnelles aux longueurs des arêtes de la maille.

La seule exception est celle de la maille rhomboédrique dont les directions des arêtes ne sont pas utilisées comme axes de coordonnées. Pour des raisons de commodité on lui préfère une maille hexagonale. En effet, toute maille rhomboédrique simple possède une maille multiple hexagonale.

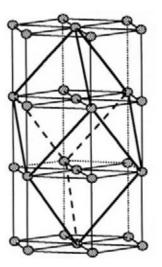
La recherche des axes de coordonnées et des unités relatives définies pour chacun d'eux nous renseigne presque complètement sur la maille élémentaire. Il ne manque que les dimensions absolues des arêtes dont nous ne connaissons jusqu'ici que les dimensions relatives.

Notons encore que la "molécule intégrante" d'Haüy était une maille élémentaire, mais il n'a pas su la discerner du motif!

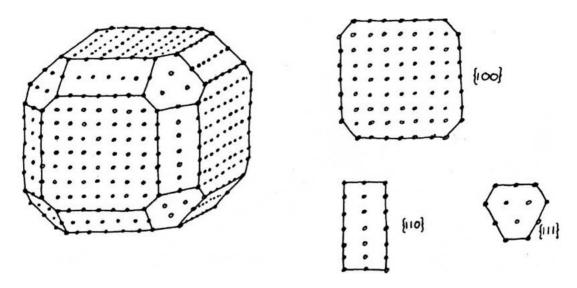
Il est possible maintenant de définir les plans réticulaires par les indices de Miller, puisque nous pouvons assimiler les axes de coordonnées à des rangées réticulaires parallèles aux arêtes de la maille élémentaire.

Le dessin ci-dessous montre un cristal cubique sur les faces duquel on a fait figurer les noeuds du réseau (cubique simple). Il s'agit d'une forme qui combine les faces du cube, de l'octaèdre et du dodécaèdre rhomboïdal.

Maille hexagonale multiple et maille rhomboédrique simple.



Cristal cubique et noeuds du réseau.



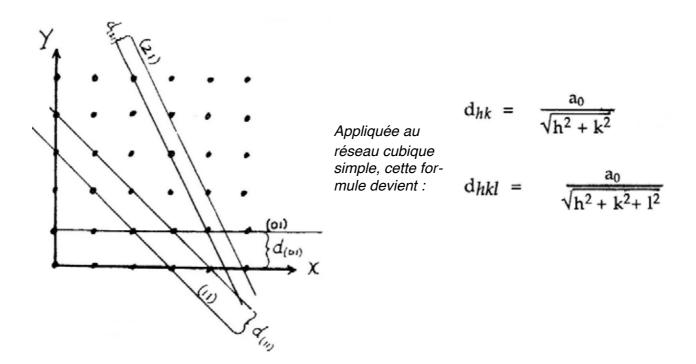
On remarque que l'orientation des faces correspond à des orientations de plans réticulaires. On en tire une conclusion très importante : le réseau est responsable de l'orientation des faces d'un cristal. Comme les réseaux ont toujours la symétrie holoédrique du système auquel ils se rapportent, il devient évident que l'absence systématique d'une partie des faces dans les mériédries, est due à une autre raison. Nous verrons plus loin que c'est dans la symétrie du motif qu'il faut rechercher la cause des mériédries.

	triclinique		×		
S	monoclinique			•	
de Bravais	orthorhombique				
élémentaires	rhomboédrique				
mailles élé	quadratique				
Les 14 m	hexagonal				
	cubique				
	maille	P simple	C à bases centrées	I centrée	F à faces centrées

Fréquence d'apparition des faces

En examinant le dessin de la page 50, on remarque que la densité réticulaire est maximum sur les faces {100}. Elle est plus faible sur les faces {110} et elle diminue encore sur les faces {111}.

La figure suivante montre un réseau à deux dimensions sur lequel on a tracé les rangées réticulaires (01), (11) et (21). La valeur de la distance réticulaire 1 est donnée par la relation :



Si on étudie systématiquement la fréquence des faces des cristaux, on constate qu'elle est proportionnelle à la densité de noeuds du plan réticulaire correspondant, elle même proportionnelle à la distance réticulaire. Il est ainsi possible de prévoir la fréquence des faces. Pour un réseau cubique simple, nous aurons :

hkl	100	110	111	210	211	221	310	311	320	321	410 322	411
$h^2 + k^2 + l^2$	1	2	3	5	6	9	10	11	13	14	17	18

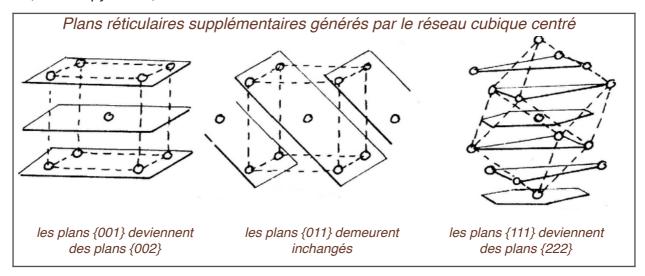
La forme la plus fréquente est le cube, puis viennent le dodécaèdre rhomboïdal, l'octaèdre, le cube pyramidé, le trapézoèdre etc...

Pour les mailles multiples il faut tenir compte des noeuds supplémentaires. Pour le réseau cubique centré, on voit apparaître des plans réticulaires intermédiaires entre les anciens plans $\{001\}$ qui deviennent alors des plans $\{002\}$. Par contre les distances réticulaires des plans $\{011\}$ restent inchangées. On constate encore que les plans $\{111\}$ deviennent des plans $\{222\}$). On en tire la conclusion que tous les plans dont la somme des indices h + k + l est impaire, sont deux fois plus rapprochés que dans la maille simple. Pour tenir compte de cette modification, il suffit de doubler les indices des plans réticulaires concernés. La fréquence de face devient alors :

¹ Distance qui sépare deux plans réticulaires parallèles successifs.

hkl	200	110	222	420	211	442	310	622	640	321	411	332	431
$h^2 + k^2 + l^2$	4	2	12	20	6	36	10	44	52	14	18	22	26

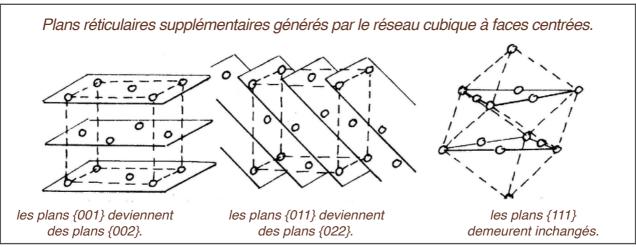
La forme la plus fréquente est donc le dodécaèdre rhomboïdal, puis viennent le cube, le trapézoèdre, le cube pyramide, l'octaèdre etc...



Quant au réseau cubique à faces centrées, par un raisonnement semblable, on peut démontrer que les plans réticulaires qui possèdent des indices mixtes, pairs et impairs, sont deux fois plus rapprochés qu'ils ne l'étaient dans le réseau cubique simple. On double donc leurs indices :

hkl	200	220	111	420	422	442	620	311	640	642	331	511	531
$h^2 + k^2 + l^2$	4	8	3	20	24	36	40	11	52	56	19	27	35

La forme la plus fréquente est alors l'octaèdre, suivie du cube, du dodécaèdre rhomboïdal, du trapézoèdre etc... Les figures suivantes montrent le comportement des plans {001}, {011} et {111}.



Pour une espèce cristalline, l'étude systématique de la fréquence des formes sous lesquelles elle se présente habituellement peut permettre d'identifier son réseau. Le diamant et la fluorine qui montrent une prédominance des formes octaédriques, ont un réseau cubique à faces centrées. Le grenat et la leucite qui cristallisent fréquemment en dodécaèdres, montrent par là que leur réseau est cubique centré. Cette étude peut être étendue aux autres systèmes. Toutefois les formules se compliquent rapidement à cause de l'augmentation du nombre des paramètres des mailles.

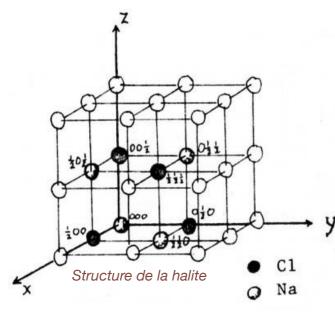
Le motif

Nous avons considéré un cristal comme étant généré par une répartition tripériodique de motifs atomiques. On peut définir le motif comme étant le plus petit groupement d'atomes qui, répété indéfiniment dans les trois directions de l'espace, reconstitue tout le cristal. L'ensemble des motifs réalise donc le remplissage hétérogène de l'espace tripériodique de la maille élémentaire.

Nous admettons que les atomes sont sphériques. Nous ne tenons pas compte, pour l'instant de leur taille et nous les représentons par des points qui figurent leur position. Nous pouvons décrire les positions des atomes à l'intérieur de la maille élémentaire en nous servant des trois côtés de cette maille comme axes de référence, et en prenant comme unités, des fractions de longueurs des arêtes. Ainsi les positions des atomes de chlore et de sodium à l'intérieur de la maille élémentaire s'écrivent :

Na: 0 0 0
$$\frac{1}{2}$$
 $\frac{1}{2}$ 0 $\frac{1}{2}$ 0 $\frac{1}{2}$ 0 $\frac{1}{2}$ $\frac{1}{2}$ Cl: $\frac{1}{2}$ 0 0 0 $\frac{1}{2}$ 0 0 $\frac{1}{2}$ 0 $\frac{1}{2}$ $\frac{1}{2}$

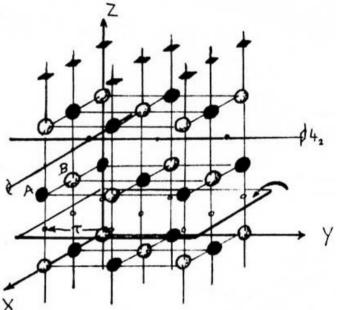
Les autres atomes ne font plus partie de cette maille, mais de la suivante. Le motif, constitué ici d'un atome de sodium et d'un atome de chlore, est répété quatre fois à l'intérieur de la



des polyèdres et celles des motifs. En examinant la figure ci-contre, nous voyons des axes A4 verticaux parallèles à Z et passant par tous les atomes. La particularité de ces axes est de ne plus passer par un point commun. Ce n'est donc plus une symétrie ponctuelle. Pour reproduire tous les atomes, il faut ajouter un nouvel opérateur de symétrie : la translation. Cette nouvelle composante a pour conséquence de faire apparaître deux opérateurs composés nouveaux : le plan avec glissement qui associe un plan et une translation, et l'axe hélicoïdal qui associe une rotation avec un glissement le long de cet axe.

maille, car elle renferme quatre nœuds (multiplicité 4). On peut maintenant décrire complètement la structure en disant que la halite possède une maille cubique à faces centrées de 5.6 Å d'arête, à l'intérieur de laquelle les atomes se répartissent suivant les coordonnées mentionnées ci-dessus.

Les atomes sont répétés périodiquement à travers tout le cristal, obéissant à des lois de symétrie identiques à celles que nous connaissons déjà. Il y a toutefois une différence fondamentale entre les lois de symétrie

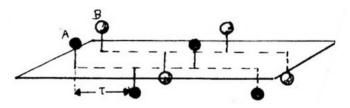


Translation τ, axe hélicoïdal, plan avec glissement, dans la structure de la halite.

Plan avec glissement

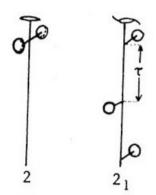
Il s'agit d'une opération qui associe la réflexion suivie d'une translation t. Le plan est un des plans principaux du réseau et la direction de translation est parallèle à une rangée du réseau contenue dans ce plan. La translation t est obligatoirement égale à une demi-translation du réseau : deux

opérations successives effectuées par un plan avec glissement, équivalent à une translation du réseau. La fig ci-contre montre comment s'effectue la répétition paun plan avec glissement. Un tel plan existe dans la structure de la halite et la figure ci-contre ne fait que reprendre une partie de la figure précédente.



Plan avec glissement

Axes hélicoïdaux



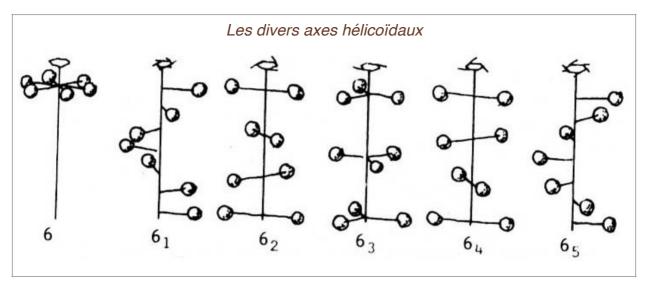
Il s'agit d'une opération qui associe une rotation avec une translation le long de l'axe. L'axe est une des directions principales du réseau et la translation t est obligatoirement une fraction entière de la période de la rangée.

Il n'existe qu'un seul axe hélicoïdal binaire. La translation est égale à une demi-période de la rangée correspondante. Deux opérations effectuées successivement équivalent à une translation du réseau.

On trouve ensuite deux axes hélicoïdaux ternaires. La rotation est d'un tiers de tour et la translation est égale à 1/3 de période (31) ou à 2/3 de période (32). Le premier est dextrogyre (la spirale tourne à droite en descendant ou tourne dans le sens positif, en montant), le second est lévo-

gyre. Remarquons que 2/3 de période dans le sens positif correspondent à 1/3 de période dans le sens négatif. Ces deux axes sont énantiomorphes.

Par un même raisonnement, on trouve trois axes hélicoïdaux d'ordre 4, caractérisés par une rotation d'un quart de tour, associés à une translation de 1/4, 2/4 ou 3/4 de la période du réseau dans la direction de l'axe. Leur symbole est 41, 42 et 43. Le premier est dextrogyre, le dernier lévogyre. L'axe 42 n'a pas de sens de rotation particulier. Nous trouvons encore cinq axes hélicoïdaux d'ordre 6 : 61, 62, 63, 64 et 65. Les deux premiers sont dextrogyres, les deux derniers lévogyres et 63 n'a pas de sens particulier. La translation vaut 1/6 de la période du réseau dans la direction de l'axe.



Les groupes de symétrie

Ces nouveaux opérateurs de symétrie qui admettent la translation, se combinent avec ceux que nous connaissons déjà dans le cadre de la symétrie ponctuelle. Leur présence implique des théorèmes nouveaux. A cause du plus grand nombre d'opérateurs et par le fait que la symétrie n'est plus ponctuelle, les combinaisons sont beaucoup plus nombreuses et les raisonnements plus compliqués. A titre d'exemple citons quelques uns de ces théorèmes :

- Les éléments de symétrie du motif doivent se répéter par des translations du réseau périodique, sans se multiplier à l'infini, dans le volume fini de chaque maille.
- Axes binaires et centres non concourants engendrent des plans avec glissement perpendiculaires aux axes et passant par les centres.
- Les centres de symétrie se répètent périodiquement dans les trois dimensions avec des périodes égales à la moitié des périodes principales du réseau.
- Deux axes binaires non concourants, séparés par une distance d et faisant entre eux un angle a, engendrent un axe hélicoïdal passant par la perpendiculaire commune aux deux axes, caractérisé par une rotation de 2a, suivie d'une translation égale à 2d.

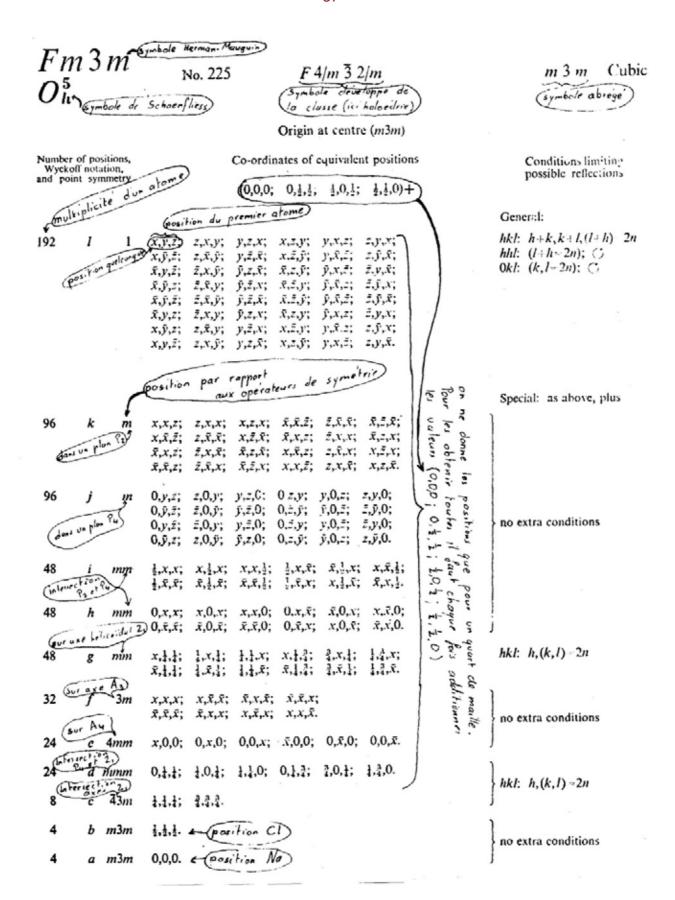
On se rend compte de la complexité des raisonnements qu'il faut tenir pour connaître toutes les combinaisons possibles. On en dénombre 230. Ce sont les 230 groupes de symétrie qu'on appelle aussi groupes d'espace.

Ils ont été étudiés par le cristallographe russe Efgraf Fédorov et le mathématicien allemand Arthur Schoenflies.

Ces 230 groupes se répartissent dans les divers systèmes de la manière suivante :

système triclinique :	2	système hexagonal:	28
système monoclinique :	13	système quadratique :	68
système orthorhombique :	59	système cubique :	36
système rhomboédrique :	25		

Il sont décrits en détails dans les Tables internationales de cristallographie. On les représente graphiquement par un plan de la maille élémentaire sur lequel figurent, d'une manière symbolique, tous les éléments de symétrie du groupe.

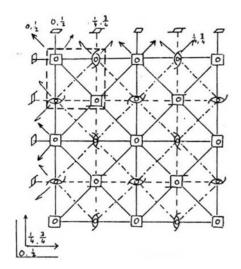


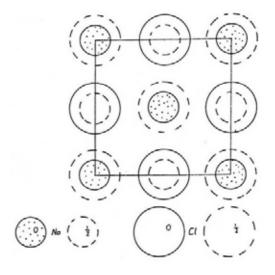
Page des Tables Internationale décrivant le groupe Fm3m auquel appartient la halite

Ces groupes sont désignés par les symboles Hermann-Mauguin et ceux de Schoenflies. Les principes de ces notations sont décrits aussi dans les Tables internationales de cristallographie. Les conventions graphiques qui symbolisent les opérateurs de symétrie y figurent également. La figure suivante montre le plan général des opérateurs de symétrie du groupe spatial auquel appartient la halite. On n'a représenté que les opérateurs normaux et parallèles au plan (001) du dessin. A cause de la symétrie cubique une représentation sur le plans (010) ou (100) serait parfaitement identique. Il s'agit du groupe d'espace N° 225. La symétrie est très élevée et le grand nombre des opérateurs ne permet pas de les faire tous figurer sur le plan. Aussi, les opérateurs obliques, A3, A2 P2 et certains axes binaires hélicoïdaux ont été placés sur des projections stéréographiques. On voit aussi les positions des atomes Na et Cl à l'intérieur de la maille avec leur élévation respective.

Position des atomes

Dans l'holoédrie du système cubique, la multiplicité de la forme oblique est de 48, ce qui signifie qu'une face placée de manière quelconque, ni perpendiculaire, ni parallèle à un élément de symétrie, est reproduite 48 fois. Une face parallèle à un axe A2 est répétée 24 fois, perpendiculaire à un axe A3, 8 fois etc... D'une manière analogue, un atome placé en position quelconque à l'intérieur de la maille sera répété un certain nombre de fois par les opérateurs de symétrie du groupe d'espace. Si l'atome est dans une position privilégiée, sur un axe, dans un plan, ou à l'intersection de plusieurs opérateurs de symétrie, sa multiplicité va alors diminuer.



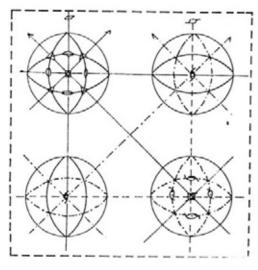


Projection sur le plan (001) des opérateurs de symétrie du groupe N°225, Fm3m.

Projection des atomes de Na et Cl sur le plan (001)

Eléments de symétrie inclinés sur le plan (001).

Les tables internationales indiquent quelles sont ces multiplicités et donnent les coordonnées de l'atome à l'intérieur de la maille. Le tableau de la page précédente est la reproduction d'une page des ces tables. Il s'agit du groupe N° 225 auquel NaCl appartient. En haut à gauche, figurent les symboles des groupes selon les notations de Hermann-Mauguin et de Schoenflies".



Au milieu de la première ligne figure la notation de la classe de symétrie ponctuelle à laquelle se rapporte le groupe; à droite on trouve le même symbole, mais en notation abrégée. La première liste indique les coordonnées des positions multiples d'un atome en position quelconque. Dans le cas présent cette liste comprend 48 termes. Toutefois il ne faut pas oublier que nous sommes dans une réseau à faces centrées qui renferme 4 noeuds en positions 0, 0, 0, 1/2, 1/2, 1/2, 0, 1/2 et 1/2, 1/2, 0. Cela signifie que chacune des 48 positions décrites dans le tableau est reproduite quatre fois, en lui additionnant chaque fois les coordonnées d'un des nœuds de la maille! Par exemple, en considérant le premier terme de la liste, x,y,r, nous aurons 4 atomes dont les positions seront les suivantes:

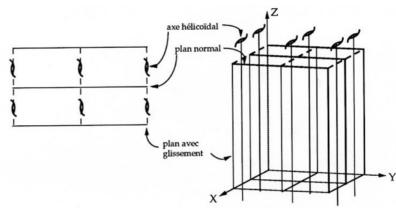
Un atome en position quelconque est donc répété 192 fois à l'intérieur de la maille. Ce chiffre élevé est dû à la symétrie élevée du groupe. Les listes suivantes donnent les positions des atomes situés dans des positions spéciales : sur un axe, dans un plan etc...

Les atomes de Na et de Cl occupent des position très privilégiées et ne sont répétés chacun que 4 fois à l'intérieur de la maille.

Holoédrie et mériédries

Dans l'exemple choisi, on constate que le groupe de symétrie contient tous les éléments de symétrie ponctuelle de l'holoédrie du système cubique plus une quantité d'autres opérateurs. Dans le cas présent, la symétrie du motif est plus élevée que celle du réseau : le cristal appartient à la classe holoédrique.

Prenons un autre exemple, le groupe de symétrie N° 31, Pmn2₁ qui correspond à une maille simple du système orthorhombique. On distingue des plans simples parallèles à (100), des plans avec glissement parallèles à (010) et des axes hélicoïdaux binaires verticaux.



Plan et élévation de la maille orthorhombique N° 31, Pmn21

On n'y retrouve pas tous les opérateurs de symétrie ponctuels de l'holoédrie du système orthorhombique : la symétrie du motif est inférieure à celle du réseau. En effet, la symétrie du cristal comportera un plan vertical parallèle à (100). Comme les plans avec glissement deviennent des plans normaux, en symétrie ponctuelle, le cristal possédera aussi un plan vertical parallèle à (010). En appliquant le théorème de symétrie qui veut qu'à l'intersection de n plans passant par une droite on trouve un axe d'ordre n, on aura encore un axe binaire vertical. La symétrie du cristal est alors A₂ P P', une mériédrie du système orthorhombique.

En conclusion, on constate que si l'orientation d'une face est déterminée par la géométrie du réseau (forme de la maille élémentaire), la présence ou l'absence de cette face dépend de la symétrie du groupe d'espace.

la symétrie du groupe d'espace contient au moins tous les opérateurs du réseau

→ Holoédrie

la symétrie du groupe d'espace est inférieure à celle du réseau

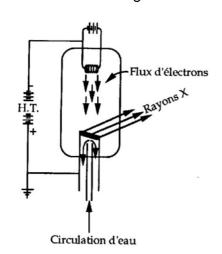
→ Mériédrie

VII. Les rayons X au service de la minéralogie

En 1895, le savant allemand Röntgen découvre un rayonnement possédant des propriétés inhabituelles qu'il nomme rayons X. En 1912, un autre allemand, von Laue, reconnaît la nature électromagnétique de ce rayonnement et parvient à en mesurer la longueur d'onde grâce aux interférences obtenues par diffraction à travers un cristal de blende (ZnS). Cette expérience marque une étape importante dans l'histoire de la minéralogie et de la cristallographie et permet le développement rapide d'une nouvelle discipline : la radiocristallographie. Grâce à elle on a pu déterminer rapidement les structures des substances cristallisées, établir un nouvelle méthode d'identification des minéraux et mettre au point de nouveaux procédés d'analyse chimique.

Nature des rayons X

Les rayons X sont des ondes électromagnétiques, tout comme la lumière, mais de longueur d'onde beaucoup plus petite. On les produit dans un tube à deux électrodes. Un filament, chauffé par un courant faible, "évapore" des électrons qui sont fortement accélérés grâce à une différence de potentiel très élevée (quelques dizaines de kilovolts) établie entre la cathode (filament) et l'autre électrode, nommée anticathode. Les électrons se précipitent sur cette dernière à une vitesse d'autant plus grande que la différence de potentiel est plus élevée. Le choc des électrons avec l'anticathode provoque l'émission de rayons X. Il faut souligner que le rendement est très faible et que seulement 0.5 % de l'énergie est transformé en rayons X. Le reste de l'énergie est dissipé sous forme de chaleur qu'il faut évacuer au moyen d'une circulation d'eau à travers l'anticathode. Pour cette raison, on maintient cette dernière à un potentiel nul (terre) et c'est le filament qui est porté à une forte tension négative. A l'intérieur du tube règne un vide très poussé.



20-I 10-So 1 50 50 1 2 2

Représentation schématique d'un tube d'émission de rayons X.

Intensité du rayonnement X en fonction de la longueur d'onde, pour un tube à anticathode de cuivre.

L'aspect du spectre émis par le tube est intéressant. L'intensité du rayonnement en fonction de la longueur d'onde est caractéristique de la nature de l'anticathode. La courbe représentée ci-dessus est celle du spectre obtenu par un tube à anticathode de cuivre auquel on a appliqué une tension de 40 kV. L'émission débute brusquement du côté des petites longueurs d'onde. Cette limite inférieure dépend du potentiel appliqué au tube selon la relation :

$$\lambda_0 = \frac{12'394}{V}$$
 où 12'393 est une constante donnée par : $\frac{h \times c}{e}$

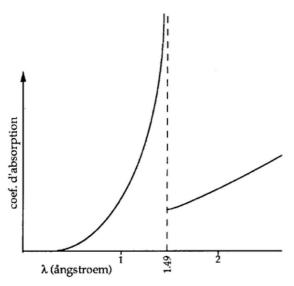
h = constante de Plank c = vitesse de la lumière e = charge de l'électron

L'intensité croît ensuite rapidement, puis diminue progressivement pour atteindre une valeur négligeable vers 3 Å. Cette répartition de l'intensité en fonction de la longueur d'onde porte le nom de fond continu. A celui-ci s'ajoutent de brusques augmentations d'intensité correspondant à des raies de longueurs d'onde bien précises, qui diffèrent selon la nature de l'anticathode. Ainsi, pour une anticathode de cuivre, on observe deux raies : $CuK\alpha$ à 1.54 Å, correspondant à une intensité de 800 des unités choisies dans l'exemple, et $CuK\beta$ à 1.39 Å, avec une intensité d'environ 100. Ces deux raies sont dues à des sauts d'électrons entre les couches internes des atomes de l'anticathode excités par les chocs des électrons provenant du filament.

Absorption des rayons X

Malgré leur réputation de traverser les corps opaques, les rayons X sont toujours plus ou moins absorbés par la matière. D'une manière générale, l'absorption croît avec le numéro atomique de la substance absorbante. C'est ainsi que les organes du corps humain, constitués de tissus différents, absorbent différemment les rayons X, et ils apparaissent en plus ou moins sombre sur une radiographie.

L'absorption varie aussi suivant la longueur d'onde utilisée. Les rayons de courte longueur d'onde sont les plus énergétiques et sont donc très pénétrants. Dans le phénomène d'absorption, on observe également de brusques discontinuités qui dépendent des éléments chimiques consti-



Coefficient d'absorption du nickel.

tuant la substance absorbante. Ainsi le nickel présente une brusque discontinuité d'absorption pour une longueur d'onde de 1.49Å.

Pour cette valeur, le coefficient d'absorption devient presque nul, puis il augmente à nouveau avec la longueur d'onde. Cette particularité est utilisée pour filtrer le rayonnement d'émission d'un tube et obtenir une lumière parfaitement monochromatique. Ainsi, en intercalant une plaquette de nickel sur le trajet du rayonnement émis par une anticathode de cuivre, on remarque que la raie CuKa ne sera que très faiblement absorbée, car elle est située juste après la discontinuité d'absorption du nickel.

La raie CuKβ se situe dans la zone de forte absorption du filtre de nickel et elle sera donc très fortement absorbée. Le rayonnement ainsi filtré sera pratiquement composé uniquement de la raie CuKα(1.54 Å).

Détection des rayons X

Les rayons X peuvent être mis en évidence de trois manières différentes :

- 1. Ils impressionnent les émulsions photographiques ⇒ radiographie
- 2. Ils rendent fluorescentes certaines substances chimiques ⇒ radioscopie
- 3. Ils ionisent les gaz sur leur passage ⇒ compteur Geiger.

Interaction des rayons X avec la matière

Les atomes excités par un rayonnement X primaire réagissent de plusieurs manières :

- 1. Ils sont ionisés, comme après un choc avec des électrons, et ils émettent à leur tour un rayonnement X secondaire dit de fluorescence, avec les raies d'émission dont la longueur d'onde est caractéristiques de l'élément cible. Ce rayonnement a une intensité beaucoup plus faible que le rayonnement primaire.
- 2. En plus du rayonnement de fluorescence, les électrons de l'élément cible émettent à leur tour, dans toutes les directions de l'espace, un rayonnement X de même longueur d'onde que celle du rayonnement primaire. Ce rayonnement est connu sous le nom de diffusion cohérente.

Il y a d'autres effets encore. Toutefois ceux décrits ci-dessus sont les seuls qui intéressent le minéralogiste. La diffusion cohérente intéresse beaucoup le cristallographe. En effet, les émissions des rayons X secondaires émis par toutes les sources cohérentes que sont tous les atomes d'une substance cristallisée, vont interférer entre elles, se renforcer dans certaines directions, s'annuler dans d'autres. Le rayonnement global dans l'espace sera donc discontinu. L'étude de ces discontinuités permet finalement de reconstituer la structure atomique des cristaux.

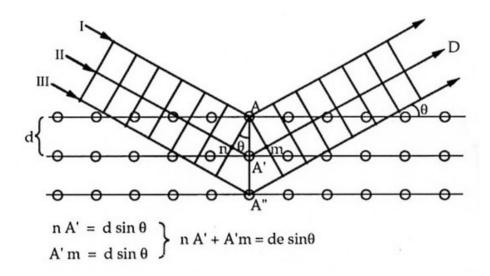
L'étude du spectre du rayonnement de fluorescence permet d'identifier les éléments chimiques présents dans la substance irradiée. C'est donc là une méthode intéressante d'analyse chimique, non destructible de la matière.

Diffraction des rayons X par les cristaux

Soumis à une source monochromatique de rayons X, les atomes régulièrement arrangés d'un édifice cristallin émettent à leur tour ce rayonnement dans toutes les directions de l'espace. Pour comprendre ce qui se passe, examinons le schéma bidimensionnel ci-dessous. On y voit des rangées d'atomes séparées les unes des autres par la distance d. Le rayon primaire atteint chaque atome à des temps légèrement différents. Il arrive sur la surface du cristal avec un angle d'incidence θ .

Les atomes A et A' diffusent chacun un rayon secondaire. Si nous examinons ce qui se passe dans la direction D, on constate que le rayon II a parcouru un chemin un peu supérieur à celui parcouru par le rayon I. La différence de cheminement est égale à nA'm.

Schéma de la diffraction des rayons X par un cristal



On peut exprimer cette différence de cheminement en fonction de d, la distance qui sépare deux rangées successives, et de l'angle θ, l'angle d'incidence. On a la relation suivante :

$$n A'm = 2d \sin \theta$$
.

Mais la condition, pour qu'un rayonnement secondaire existe dans la direction considérée, est que la différence de cheminement soit exactement égale à un nombre entier de longueurs d'onde (nλ). Cette condition s'exprime de la manière suivante :

$$n\lambda = 2d \sin \theta$$

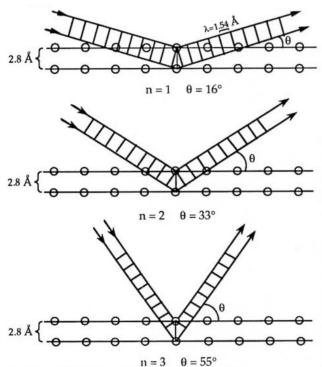
Cette relation fondamentale en radiocristallographie porte le nom de loi de Bragg.

Il est intéressant de l'examiner un peu plus attentivement et de voir quelles valeurs peut prendre le nombre n. Nous savons que les distances entre les atomes sont de l'ordre de quelques angstræm. Les couches d'atomes parallèles à (001) sont séparées par une distance de 2.8 Å. En utilisant un rayonnement de 1.54 Å de longueur d'onde ($CuK\alpha$), le rayonnement primaire ne peut être "réfléchi" que pour des angles de 16° (n=1), 33° (n=2) ou 55° (n=3). En effet, pour n = 4, 2d sin θ serait supérieur à 1. Le nombre n ne peut donc prendre que des valeurs entières inférieures à :

$$n < \frac{2d \sin \theta}{\lambda}$$

Dans le cas de NaCl, les couches d'atomes parallèles à (001) sont séparées par une distance réticulaire de 2.8 Å. Si on utilise une anticathode de Cu avec une longueur d'onde de 1.54 Å, on ne peut avoir de réflexion que pour des angles d'incidence de 16° (n=1), 33° (n=2) et 55° (n=3). Dans ce cas précis, n ne peut prendre que les valeurs 1, 2 et 3.

En résumé, pour les incidences qui satisfont à la loi de Bragg, les rayons X sont comme "réfléchis" par les plans réticulaires. Cette sorte de réflexion porte le nom de **diffraction**.



On peut ainsi calculer aisément les distances réticulaires des cristaux si on connaît la longueur d'onde utilisée et si on parvient à mesurer les angles de diffraction. De nombreuses méthodes ont été imaginées pour mesurer les angles de diffraction. Nous ne les décrirons pas toutes ici. Elles font l'objet de cours plus spécialisés.

Diffraction des rayons X par les plans (001) de NaCl, pour n = 1, 2 et 3.

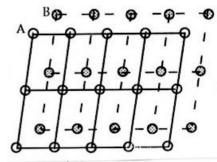
Conditions de diffraction

Nous pouvons décrire la structure d'un minéral si nous connaissons la géométrie de sa maille élémentaire ainsi que les positions des divers atomes à l'intérieur de ladite maille. Quelles sont donc les influences du réseau et du motif sur la diffraction des rayons X par un cristal ?

Examinons la figure ci-contre : elle représente un cristal à deux dimensions constitué de deux

types d'atomes. La maille élémentaire renferme un atome A et un atome B. Si on ne considère que les atomes A, on remarque qu'ils définissent le réseau dessiné en traits pleins. Ce réseau détermine les conditions de diffraction des rayons X pour les atomes A.

Les atomes B constituent un réseau identique (en pointillés). Les deux réseaux sont parallèles l'un à l'autre et leurs conditions de diffraction sont identiques. Les directions de diffraction sont donc les mêmes. Toutefois, elles interfèrent entre elles, provoquant un renforcement ou une atténuation, voire même la



disparition de certaines réflexions. Ces considérations sont importantes car elles montrent que :

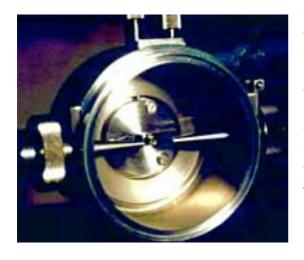
- 1. les directions de diffraction ne dépendent que du réseau,
- 2. l'intensité des réflexions dépend des position des différents atomes à l'intérieur de la maille élémentaire.

L'étude de la diffraction des rayons X par les cristaux offre donc la possibilité de déterminer non seulement les dimensions de la maille élémentaire, mais aussi les positions des atomes à l'intérieur de celle-ci.

Une application simple : la méthode des poudres

Si on examine la relation de Bragg, $n\lambda = 2d \sin\theta$, on remarque qu'une des possibilités, pour réaliser les conditions de diffraction, consiste à imprimer au cristal un mouvement de rotation. Chaque fois que son orientation vis-à-vis du rayonnement X primaire (onde monochromatique) remplit les conditions de Bragg, on obtient une réflexion.

Mais, au lieu de faire tourner un cristal unique, on peut utiliser une poudre cristalline. En prenant 1 mm³ de poudre cristalline dont le diamètre moyen des grains est de 0.001 mm, on dispose dans ce volume de poudre environ 10⁸ à 10⁹ grains !



Si on place cette poudre sur le trajet d'un rayonnement X primaire, il y a toutes les chances de trouver des grains qui remplissent les conditions de diffraction pour toutes les familles de plans réticulaires car, statistiquement, dans un si grand nombre de grains, toutes les orientations possibles sont représentées. La plus simple des caméras de poudre est celle dite Debye-Sherrer, du nom de leurs inventeurs. C'est une boîte cylindrique aplatie dont la paroi intérieure est garnie d'un film photographique.

Caméra "Debye-Sherrer"

Principe schématique de la caméra Debye-Sherrer

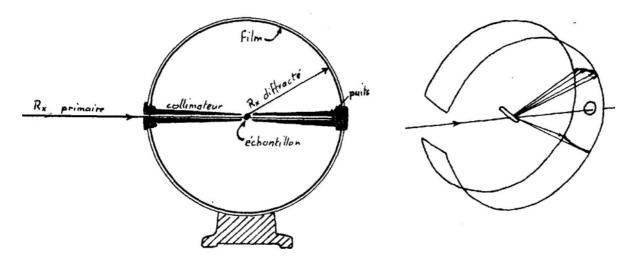
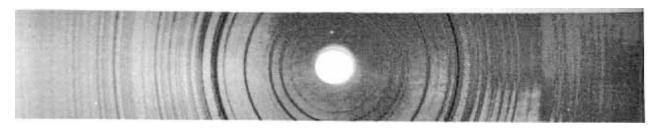
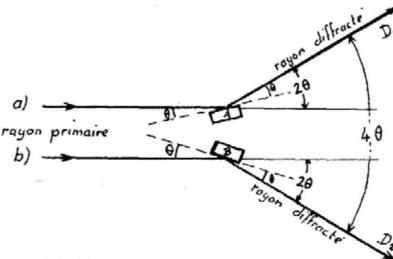


Diagramme obtenu avec une caméra Debye-Sherrer

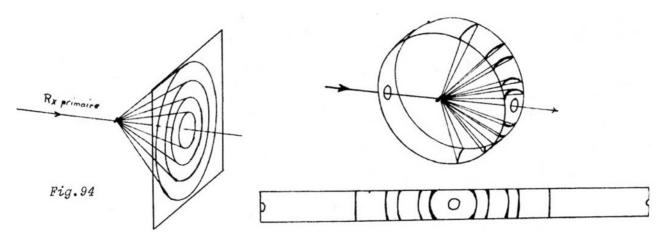


Les rayons X pénètrent dans la caméra en traversant un collimateur. Ils irradient l'échantillon placé au centre géométrique de la caméra. Cet échantillon est constitué d'un tube capillaire rempli de poudre cristalline ou d'un fil de verre très fin sur lequel la poudre se trouve engluée (par du baume du Canada, par exemple). Les rayons diffractés par la poudre vont impressionner l'émulsion photographique, alors que la partie du rayon primaire qui a traversé l'échantillon est recueillie et absorbée par un puits disposé à cet effet dans le prolongement du collimateur. Examinons la façon dont se forment les rayons diffractés : parmi la multitude de petits cristaux qui constituent la poudre, on en trouve certainement un qui a la position favorable pour que le rayon primaire, d'incidence θ, produise le rayon diffracté D1. Avec un même raisonnement, on peut imaginer qu'un autre cristal se trouve dans la position favorable nécessaire pour assurer l'existence du rayon diffracté D2, symétrique au premier.

Etendu à trois dimensions, ce raisonnement montre que chaque famille de plans réticulaires est responsable de la formation d'un cône de diffraction de demi-ouverture 20



Principe de la diffraction des rayons *X* par une poudre cristalline.



Cônes de diffraction produits par une poudre cristalline.

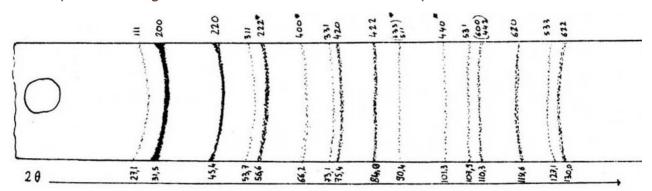
Intersection des cônes de diffraction avec le film et aspect du film une fois développé.

Sur le film obtenu avec une caméra cylindrique, on obtient des raies légèrement courbes qui sont le résultat de l'intersection du cylindre de la caméra avec les cônes de diffraction correspondant aux diverses familles de plans réticulaires. Chaque cône détermine donc deux raies symétriques de part et d'autre du trou central du film. Ces raies sont séparées par une distance angulaire 40. Les constructeurs s'arrangent pour construire des caméras dont la circonférence intérieure est de 180 ou 360 mm afin que les lectures effectuées en millimètres soient aisément converties en degrés.

Exemple concret

Après avoir broyé un échantillon assez finement (200 à 300 mesh) on le dispose au centre de la caméra, soit dans un fin tube capillaire soit sur un fil de verre étiré, imprégné de colle. On garnit le pourtour intérieur du cylindre d'un film photographique, on ferme le couvercle de la caméra et on place l'entrée du collimateur devant la source du générateur de rayons X. Après développement du film on voit apparaître une série de raies symétriques de part et d'autre du centre du film (matérialisé par le trou nécessaire pour laisser passer le collimateur). On mesure les distances qui séparent deux raies symétriques et on les convertit en valeur angulaire 4θ (ou 2θ si on mesure à partir du centre du film).

Aspect d'un diagramme de diffraction obtenu sur une poudre cristalline de NaCl.



On sait que les distances réticulaires sont inversement proportionnelles à l'angle θ . Elles sont donc décroissantes du centre vers l'extrémité du film. Par ailleurs, nous savons déjà que notre minéral est cubique et nous connaissons le classement décroissant des distances réticulaires cubiques selon leur mode de réseau. Nous les rappelons dans le tableau ci-dessous :

maille	====== distances réticulaires décroissantes ======⇒												
Р	100	110	111	210	211	221	310	311	320	321	410	322	411
1	110	200	211	310	222	321	411	420	332	431	442	622	640
F	111	200	220	311	331	420	422	511	531	442	620	640	642

Nous connaissons aussi la relation :

$$d = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}} \quad \text{de même nous connaissons} \quad \sin \theta = \frac{n\lambda}{2d}$$
on en tire
$$\sin^2 \theta = \frac{\lambda^2}{4a_0^2} \Big[n^2 \Big(h^2 + k^2 + l^2 \Big) \Big]$$
ou encore
$$\sin^2 \theta = m \times \Big[n^2 \Big(h^2 + k^2 + l^2 \Big) \Big]$$
d'où
$$m = \frac{\sin^2 \theta}{n^2 \Big[n^2 \Big(h^2 + k^2 + l^2 \Big) \Big]}$$

Nous pouvons calculer le facteur n^2 ($h^2 + k^2 + l^2$) pour les premiers termes des distances réticulaires décroissantes des trois modes cubiques. On obtient :

	mode	hkl	100	110	111	100	210	211	220		
	P	$h^2 + k^2 + l^2$	1	2	3	4*	5	6	8*		
* n = 2											
	mode	hkl	1	110	ı	200	-	211	220		
	1	$h^2 + k^2 + l^2$	-	2	-	4	-	6	8*		
	mode	hkl	-	_	111	200	_	_	220		
	F	$h^2 + k^2 + l^2$	_	_	3	4	_	_	8		

Calculons la valeur $\sin^2 \theta$ pour les deux premières raies du diagramme :

$$\sin^2 \frac{27.1}{2} = 0.055$$
 $\sin^2 \frac{31.5}{2} = 0.074$

Pour un réseau P on doit satisfaire la relation 0.055/1 = 0.074/2 (non satisfaite). Pour un réseau I on doit satisfaire la relation 0.055/2 = 0.074/4 (non satisfaite). Pour un réseau C on doit satisfaire la relation 0.055/3 = 0.074/4 (satisfaite).

On constate donc que le diagramme correspond à celui d'un réseau cubique faces centrées. On peut maintenant calculer la valeur de m, ainsi celle de a₀.

$$m = \frac{0.074}{4} = 0.0185$$
 d'où on tire a_0 $a_0 = \frac{1.54}{\sqrt[2]{0.0185}} = 5.6$

On peut maintenant indicer toutes les raies du diagramme au moyen de la relation :

$$n^2(h^2 + k^2 + l^2) = \frac{\sin^2 \theta}{0.0185}$$

Identification d'une espèce minérale

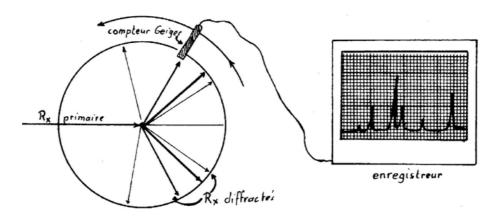
Si le raisonnement est relativement simple dans le cas du système cubique, il se complique singulièrement en ce qui concerne les autres systèmes. Nous n'aborderons pas cette étude dans le cadre de ce cours et nous renvoyons le lecteur intéressé à des ouvrages spécialisés.

L'intérêt immédiat de ces méthodes réside dans le fait qu'on n'a pratiquement jamais deux diagrammes identiques. Les positions des raies ainsi que leurs intensités relatives diffèrent d'une espèce minérale à l'autre. Un diagramme de poudre est une sorte "d'empreinte digitale" qui désigne l'espèce minérale qui l'a produit.

"The International Center for Diffraction Data" tient à jour un fichier des données cristallographiques de toutes les espèces minérales connues (ainsi que toutes les substances minérales et organiques). On peut se le procurer sous forme d'annuaire ou, mieux, sous forme de fichier informatique constamment renouvelé. Divers systèmes de recherche permettent d'identifier relativement aisément une espèce minérale. Ils sont basés soit sur les positions des 3 raies les plus intenses, soit à partir de 8 raies arrangées par distances réticulaires décroissantes. Une fois l'espèce identifiée, un numéro de référence renvoie à des fiches qui fournissent toutes les données cristallographiques de l'espèce concernée.

Le diffractomètre

Au lieu d'enregistrer les raies sur un film, on peut utiliser un appareil de type compteur Geiger. En lieu et place du film on fait tourner un bras mobile supportant un compteur. Chaque fois que la fenêtre sensible du compteur coupe un cône de diffraction, il enregistre l'augmentation d'intensité du rayonnement. Un enregistreur inscrit ces variations sur un papier millimétré. L'intensité est portée en ordonnées, l'angle θ en abscisses.

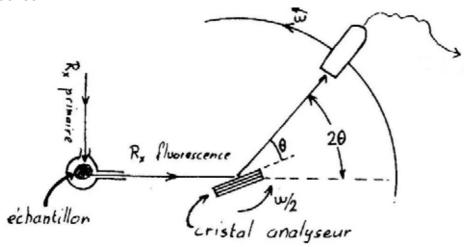


Principe du diffractomètre.

Analyse chimique par effet de fluorescence X

Mentionnons encore l'utilisation de l'effet de fluorescence X en chimie analytique. Il s'agit cette fois-ci d'analyser le spectre du rayonnement de fluorescence qui se compose, rappelons-le, des radiations de longueurs d'onde caractéristiques émises par les éléments chimiques excités. Le rayonnement excitateur est soit un flux électronique, soit un rayonnement X primaire de haute énergie.

Le problème consiste donc à analyser le spectre complexe du rayonnement secondaire. A cet effet, on s'arrange pour envoyer celui-ci sur un cristal dont on connaît parfaitement les distances réticulaires. Ce cristal tourne lentement. Il y aura diffraction chaque fois que l'incidence sera favorable et que la relation de Bragg sera satisfaite. La distance réticulaire étant connue, la mesure de l'angle θ permet de connaître la longueur d'onde. Mécaniquement, le compteur tourne deux fois plus rapidement que le cristal analyseur afin de maintenir l'angle de réflexion égal à celui d'incidence.



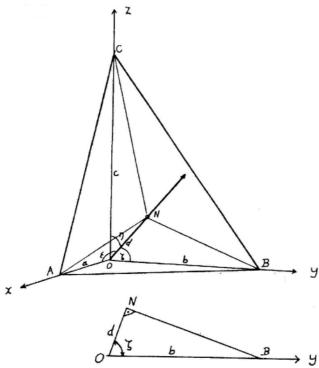
Principe du fonctionnement du diffractomètre pour l'analyse de l'effet de fluorescence.

VIII. Quelques relations mathématiques

Paramètres cristallins et maille élémentaire

Aujourd'hui, il est aisé de reconstituer la maille élémentaire de n'importe quelle substance cristallisée grâce à la diffraction des rayons X. Trois arêtes concourantes de la maille déterminent les directions des axes de coordonnées, et les longueurs relatives des arêtes déterminent les paramètres sur ceux-ci. On définit les angles que font les arêtes les unes sur les autres et on exprime leurs longueurs en angstræm1.

Avant l'avènement des rayons X, les axes de coordonnées étaient déterminés par les intersections de trois faces non parallèles d'un cristal, choisies en raison de la symétrie du parallélépipède qu'elles engendraient. Le choix d'une troisième face, oblique sur les précédentes, servait à déterminer les paramètres sur ces axes. La symétrie et l'indicement des faces étaient basés sur un parallélépipède sans dimension, défini par les trois angles que déterminaient les arêtes les unes sur les autres, et par les longueurs relatives des unités sur chaque arête, l'unité de référence étant la longueur de l'arête b. Ce parallélépipède imaginaire définissait les paramètres du minéral. Ainsi, au cours du XIXe siècle, on a déterminé les paramètres de la plupart des espèces minérales. Aujourd'hui, on connaît les mailles élémentaires de toutes les espèces minérales. Et si, parfois, les mailles élémentaires se sont révélées coïncider avec les anciens paramètres, bien souvent on s'est aperçu que ces derniers avaient été mal choisis. Abordons plus en détail le problème de la détermination des paramètres cristallins.



Pour cela, examinons la figure ci-contre : une face oblique coupe les trois axes X, Y et Z, en A, B et C. La normale à la face détermine avec les axes de coordonnées les angles e, z et h. La distance entre l'origine des axes O et l'intersection de la normale avec la face N est d.

Relations entre l'orientation d'une face et les paramètres qu'elle détermine sur les axes de coordonnées.

Les relations trigonométriques sont :

$$d = OA \cos \varepsilon$$
, d'où
$$OA = \frac{d}{\cos \varepsilon}$$

de même nous trouvons:

$$OB = \frac{d}{\cos \zeta}$$
 et $OC = \frac{d}{\cos \eta}$

¹ Rappelons qu'un angstrœm vaut un dix millionième de mm

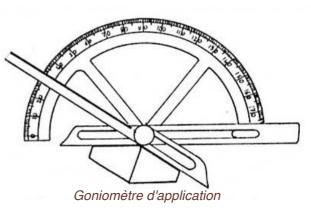
Les angles ε , ζ et η sont déterminés par la normale à face unitaire avec les normales aux 3 faces choisies pour définir les axes de coordonnées. On mesure ces angles à l'aide d'un goniomètre.

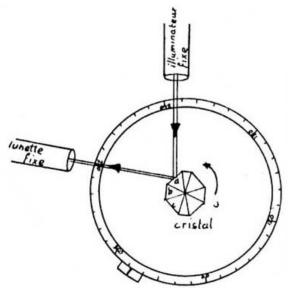
Le modèle le plus simple est le goniomètre d'application. Il est constitué d'un rapporteur muni d'une réglette tournant autour du centre. Sa précision est faible et on ne peut l'utiliser qu'avec des cristaux relativement grands. Ce premier modèle a été réalisé en 1772 par le français Arnould Carangeot.

Bien vite on a inventé des appareils plus précis, basés sur la réflexion d'un signal lumineux sur les faces du cristal. On utilise le fait que les cristaux ont toujours un certain nombre de faces parallèles

à une même direction. Cet ensemble de faces

constitue une zone. La mesure consiste à faire tourner le cristal autour de l'axe de zone et à noter les angles qui séparent les réflexions successives correspondant à chaque face.





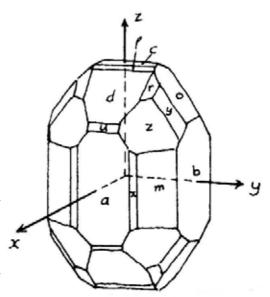
On recommence cette opération pour chaque zone. Les goniomètre modernes permettent de mesurer les angles entre les faces avec une précision atteignant la minute d'arc.

Aujourd'hui, la diffraction des rayons X a complètement supplanté le calcul cristallographique. Toutefois, les goniomètres sont encore utilisés pour orienter des cristaux avant de les disposer sur certaines caméras de diffraction de rayons X.

Principe du goniomètre optique.

Le calcul cristallographique

Reprenons l'exemple du cristal de barytine dont nous avons mesuré les angles entre les normales à chaque face et celles des faces a, b, et c, prises comme trièdre de référence. Les résultats des mesures sont résumés dans le tableau-ci-dessous. A partir de ces données, nous avons calculé les paramètres a/b et c/b au moyen des équations développées plus haut. On remarque que les rapports les plus fréquents sont 0.815 pour a/b et 1.313 pour c/b. En choisissant ces deux valeurs comme paramètres du cristal, nous adoptons du même coup la face z comme face unitaire. Sur le dessin du cristal, son développement apparaît aussi plus important que celui des faces r ou y.



Cristal de barytine

Paramètres calculés pour chacune des faces de la barytine

face	ε	ζ	η	<u>a</u> b	:	1	:	<u>c</u> b
0	90°	37° 10'	53° 43'	8	:	1	:	1.3135
m	39° 11'	50° 49'	90°	0.8151	:	1	:	∞
X	22° 10'	67° 50'	90°	0.4077	:	1	:	∞
1	68° 04'	90°	21° 56'	2.6772	:	8	:	1.078
d	51° 08'	90°	38° 52'	1.5936	:	∞	:	1.2844
u	31° 49'	90°	58° 11'	1.1754	:	8	:	1.8972
z	45° 42'	55°17'	64°19'	0.8153	:	1	:	1.3138
r	56° 03'	62° 55'	46° 06'	0.8152	:	1	:	0.6566
у	63° 59'	44° 21'	57° 01'	1.6303	:	1	:	1.3138

En choisissant les valeurs de 0.8153 et 1.3138 pour a/b et c/b, nous pouvons indicer toutes les autres faces :

Indices des faces de la barytine

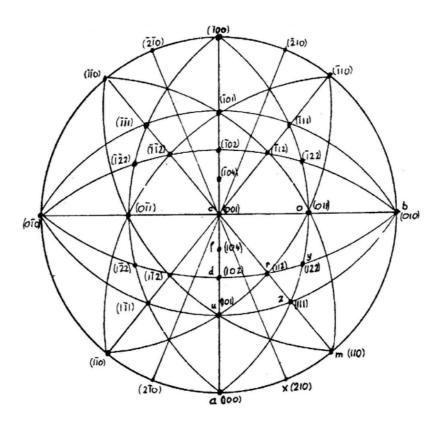
face	a : b : c	indices	
0	∞:1:1	1 1	
m	1:1:∞	110	
X	1:2:∞	210	face z prise comme plan unitaire.
1	4 : ∞ : 1	104	piari armane.
d	2:∞:1	102	paramètres du cristal :
и	1:∞:1	101	0.8153 : 1 : 1.3138
Z	1:1:1	111	
r	2:2:1	112	
У	2:1:1	122	

Il est intéressant de voir ce qui se passe si, au lieu de z, nous choisissons comme face unitaire r ou y. Les indices des autres faces changent et les paramètres changent aussi. Nous aurions alors les valeurs décrites dans le tableau ci-dessous. Nous trouvons aussi des indices très simples. une incertitude subsiste : sommes nous sûrs que c'est bien la face z qu'il fallait choisir ? Aucun critère purement géométrique ne nous permet d'en décider. Seule la recherche de la maille élémentaire par les méthodes diffractométriques permet de lever cette indétermination. Cette méthode nous révèle que les arêtes de la maille élémentaire de la barytine ont pour longueurs 8.85, 5.43 et 7.13 Å. On constate que c'était y la meilleure face unitaire!

Indices des faces de la barytine suivant le choix de la face unitaire

face	hkl		face	hkl	
0	21		0	1 1	
m	110		m	210	
X	210	face unitaire choisie : r	X	410	face unitaire choisie : y
1	102		1	102	
d	101	paramètres obtenus :	d	101	paramètres obtenus :
и	201		и	201	
Z	221	0.8153 : 1 : 0.6566	Z	211	1.6303 : 1 : 1.3138
r	111		r	212	
у	121		У	111	

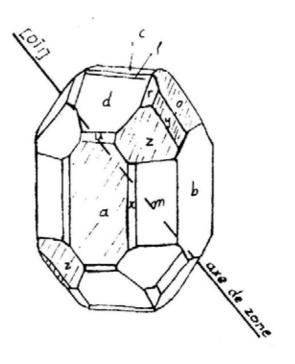
Sur la projection stéréographique, on a tracé divers grands cercles passant par plusieurs faces. Toutes les faces situées sur un même grand cercle constituent une zone. Les faces (100), (101), (102), (104), (001), (104), (102), (101), (100), constituent une zone. Les faces (110), (101), (112), (011), (110) constituent une autre zone. La face (101) est commune aux deux zones.



Projection stéréographique des pôles des faces de la barytine. Seules les faces de l'hémisphère supérieure du cristal ont été représentées.

Les zones

Le dessin ci-contre montre, en hachurés, une zone, celle qui comprend les faces (122), (111), (100), (111), (122), (011) etc... La droite parallèle à toutes ces faces est l'axe de zone. On le désigne par le symbole [011]. Il est important de retenir qu'il s'agit d'un symbole qu'il ne faut pas confondre avec les indices d'une face. Il est placé entre parenthèses crochets. On peut trouver le symbole de l'axe de zone à partir des indices de deux faces de la zone en se servant de la règle des déterminants. Soit deux faces d'indices h₁k₁l₁ et h₁k₁l₁, le symbole de l'axe de zone [UVW] est:



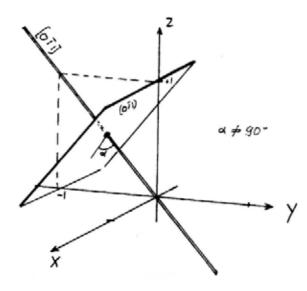
Zone définie par les faces o, y, a, z, et l'axe de zone correspondant.

$$U = k_1 l_2 - l_1 k_2$$

$$V = l_1 h_2 - h_1 l_2$$

$$W = h_1 k_2 - k_1 h_2$$

Si nous appliquons cette règle en prenant les faces (111) et (121), nous obtenons :



On montre ici cet axe de zone. Il correspond à la grande diagonale déterminée par le parallélépipède d'arêtes 0, 1 et 1. Dans le cas présent, comme une des valeurs est nulle, le parallélépipède se réduit à un rectangle. Remarquons que l'axe de zone désigné par [011] n'est pas perpendiculaire à la face (001)! Pour cette raison on parle de symbole et non d'indice. Réciproquement, étant donné les symboles de deux axes de zone, on obtient la notation de la face commune, au moyen de la règle des déterminants.

Par exemple, la face commune aux deux zones [011] et [001] (ensemble des faces verticales) est :

La face (100) est bien commune aux deux zones. Remarquons que le symbole de zone [011] peut aussi s'écrire [011]. En utilisant ce dernier symbole dans le déterminant on aurait obtenu alors la face (100), visible sur le dessin.

Loi de Weiss

Cette loi sert à vérifier qu'une face fait bien partie d'une zone. Elle s'exprime de la manière suivante :

une face (hkl) appartient à une zone [UVW] si la relation suivante est satisfaite : Uh + Vk + Wl = 0

En corollaire à ces diverses règles, apparaît une autre loi qui s'énonce ainsi :

En additionnant terme à terme les indices de deux faces d'une même zone, on obtient les indices d'une troisième face de cette même zone, située entre les deux premières.

Prenons les faces z (111) et o (011), nous obtenons une troisième face ((1+0) (1+1) (1+1)) soit les indices de la face y (122).

IX. Un peu de cristallochimie

La cristallochimie est une science qui a pris naissance au début du XXe siècle avec la découverte des rayons X. Elle a pour but d'élucider la relation entre la composition chimique et l'arrangement des atomes dans les cristaux. Dans un sens plus large, elle examine les relations entre les arrangements atomiques et les propriétés physiques des substances cristallisées.

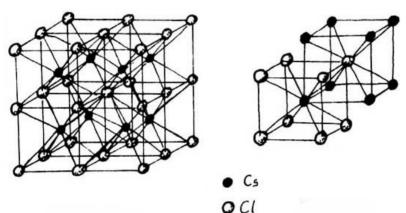
Reprenons la configuration de la halite. Nous pouvons décrire la relation entre les atomes en disant que chaque atome de sodium est entouré de six atomes de chlore situés à égale distance. On dit que sur la première sphère de coordination de rayon 2.8 Å, il y a six atomes de chlore1.

On définit les droites de coordination que l'on obtient en reliant l'atome considéré (ici le sodium) avec ses plus proches voisins. On Configuration atomique de NaCl, appelle encore polyèdre de coordination le polyèdre qu'on obtiendrait en faisant passer des plans par les

Na

polyèdre et sphère de coordination de Na

atomes coordinés. Dans le cas de la halite, le polyèdre de coordination est un octaèdre. Remarquons encore que chaque atome de chlore est également entouré de six atomes de sodium en coordination octaédrique.



Structure de CsCl et polyèdre de coordination

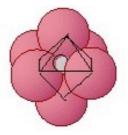
Examinons maintenant la configuration du chlorure de césium : on voit que chaque atome de césium est entouré de huit atomes de chlore.

Le polyèdre de coordination est un cube. Pourquoi alors NaCl et CsCl, tous deux chlorures d'un métal alcalin dont les liaisons chimiques sont semblables, présentent une différence de structure?

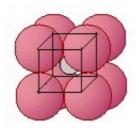
On s'est rapidement rendu compte que la taille des atomes était un facteur prépondérant de l'arrangement structural. Ainsi, dans le cas

de la halite, l'atome de sodium est suffisamment petit pour pouvoir se loger entre six atomes de chlore. Dans le cas du césium, dont le rayon ionique est plus grand que celui du sodium, il faut un interstice plus grand, celui qui existe entre 8 atomes en coordination cubique.

¹ On pourrait compléter cette image en ajoutant qu'il y a une deuxième sphère de coordination de rayon 2.8√2Å sur laquelle on trouve 12 atomes de sodium.



Atome de Na à l'intérieur d'un polyèdre octaédrique défini par 6 atomes de Cl.

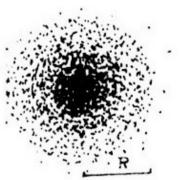


Atome de Cs à l'intérieur d'un polyèdre cubique défini par 8 atomes de Cl.

La taille des atomes

On sait qu'un atome est constitué d'un noyau formé de particules lourdes, protons et neutrons, autour duquel gravitent un nombre plus ou moins grand d'électrons. D'une manière un peu simpliste, on peut considérer l'atome comme un noyau entouré d'un brouillard électronique dont la densité décroît rapidement à partir d'une certaine distance du noyau. On peut considérer le rayon atomique comme étant la distance, depuis le centre de l'atome, à partir de laquelle la densité électronique devient négligeable. Les facteurs qui conditionnent la taille d'un atome sont de trois types et dépendent :

- 1. du nombre d'enveloppes électroniques et de la charge nuclaire de l'atome;
- 2. de l'état neutre ou excité de l'atome ;
- 3. de diverses causes externes à l'atome.



Densité électronique et rayon de l'atome.

Si on considère une colonne verticale du tableau périodique, on remarque que la taille des atomes augmente du haut vers le bas. Par contre elle diminue de gauche à droite sur une même rangée.

Li 1.56												
Na	Mg	Al	Si	Р	S	CI	l	/ariatio	n du ra	avon at	omiaue	le lona
1.91	1.6	Variation du rayon atomique le 1.43 1.17 1.1 1.04 0.99 d'une rangée et le long d'une c				_						
K												
2.34												
Rb							Li	Na	K	Rb	Cs	
2.5		état neutre 1.56 1.91 2.34 2.5 2.71										
Cs	une charge + 0.78 0.98 1.33 1.49 1.65											
2.71	Rayon électronique de divers atomes en fonction de leur degré d'ionisation.											

On explique facilement ce phénomène : dans une même colonne le nombre d'enveloppes électroniques augmente du haut vers le bas. Sur une même rangée le nombre d'enveloppes électroniques est constant, mais la charge du noyau augmente de gauche à droite (rangée), entraînant la contraction du nuage électronique.

La taille de l'atome est aussi fortement influencée par son état d'excitation. La perte d'un ou plusieurs électrons contracte le nuage électronique, entraînant la diminution du rayon de l'atome. Inversement, le gain d'un ou deux électrons entraîne l'augmentation du rayon atomique. Le type de liaison influence aussi la taille de l'atome. On parle de rayon ionique dans les composés ioniques, de rayon covalent dans les composés covalents, de rayon métallique dans les métaux et les alliages.

Encombrement des constituants structuraux

Les structures des métaux sont intéressantes, car les liaisons métalliques ne sont pas dirigées et on peut considérer les atomes comme des sphères soumises à un champ d'attraction isotrope. Ces dernières cherchent à s'assembler en réalisant un remplissage maximum de l'espace. Il y a deux manières de réaliser un tel remplissage. Tout d'abord, dans un plan, la manière d'assembler des sphères de la façon la plus serrée possible consiste à entourer chaque sphère de six autres.

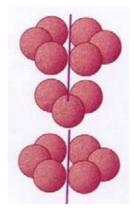
Oranges disposées selon un assemblage compact dans le plan. La symétrie est hexagonale.

On réalise ainsi un assemblage hexagonal qui rappelle la disposition des nids d'abeilles. Remarquons que chaque sphère est entourée de six interstices alors que chaque interstice n'est entouré que de trois sphères. Il y a donc deux fois plus d'interstices que d'atomes.

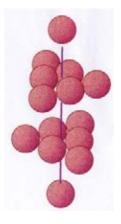
La manière la plus rationnelle d'adjoindre à cette couche d'atomes une deuxième couche, consiste à disposer les atomes de la couche supérieure exactement au-dessus des interstices de la première, de telle manière qu'un atome repose toujours sur trois atomes de la couche inférieure. La troisième couche se dispose de la même manière.

Deux possibilités peuvent alors se présenter :

- 1. les atomes de la troisième couche sont exactement à l'aplomb des atomes de la première couche, ce qui détermine un empilement de type ABABA.
- les atomes de la troisième couche sont exactement au-dessus des interstices de la première couche, non couverts par les atomes de la deuxième couche, ce qui détermine un empilement de type ABCABC.

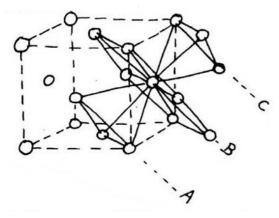


Assemblage hexagonal compact



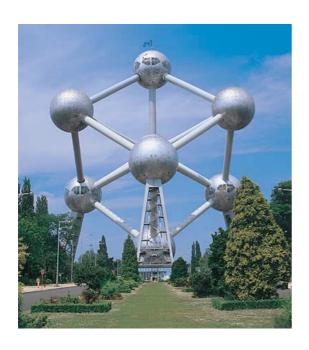
Assemblage cubique compact

On voit ci-dessous ces deux configurations. Le type ABABA entraîne une symétrie hexagonale, le second type une symétrie cubique avec réseau cubique à faces centrées. On parle d'assemblage cubique compact ou d'assemblage hexagonal compact. Dans les deux cas le taux de remplissage de l'espace est maximum, soit 74% du volume total. Chaque atome est entouré de 12 autres atomes : le nombre de coordination est 12.

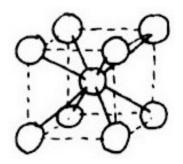


Assemblage cubique compact avec sa maille cubique à faces centrées

Il existe un troisième type d'assemblage métallique, caractérisé par un nombre de coordination de 8. C'est l'assemblage cubique centré. Il s'agit de la structure du type tungstène à l'intérieur de laquelle chaque atome est entouré de huit autres situés au sommets d'un cube. L'assemblage n'est plus tout à fait compact et le taux de remplissage n'est plus que de 68 %. La structure est cubique, avec un réseau centré.



L'atomium de Bruxelles, un modèle d'assemblage cubique centré



Assemblage cubique centré.

Structure cristalline des divers métaux usuels						
remplissage	réseau	m é t a l				
compact, 74 %	hexagonal	Be, Mg, Ti, Zr, Hf, Co				
compact, 74 %	cubique à faces centrées	Ca, Sr, Ni, Pt, Cu, Ag, Au, Al, Pb				
moins compact 68 %	cubique centré	Cs, Ba, V, Nb, Ta, Mo, W, Fe				

Composés de type AB

coordinance 2

Nous avons vu, avec les exemples de NaCl et CsCl, que la taille des atomes était responsable, pour une grande part, de la structure des composés de type AB. Si le rayon de l'atome A est très petit vis-à-vis de celui de l'atome B, il ne peut être entouré que de 2 atomes B si ont veut qu'ils soient en contact l'un avec l'autre. Si la taille de l'atome A augmente, il arrive un stade où il a juste la taille convenable pour s'insérer entre trois atomes B situés aux sommets d'un triangle équilatéral; le nombre de coordination vaut 3. Si la taille de l'atome A croît encore, on arrive à la coordination 4 dans laquelle il occupe tout l'espace laissé libre par 4 atomes B situés aux sommets d'un tétraèdre. En augmentant encore de taille, on passera successivement à la coordinance 6 (octaèdre), 8 (cube) et finalement à une structure de type métallique, si les rayons des atomes A et B sont identiques.

Les polyèdres de coordination dépendent des tailles relatives des atomes liés.



Polyèdre de coordination en fonction des tailles relatives des atomes

coordinance 4

coordinance 6

coordinance 8

Nb. de coord.	Disposition des atomes B	<u>rayon de A</u> rayon de B
2	sur une ligne avec A	< 0.15
3	sommets d'un triangle	0.155 → 0.285
4	sommets d'un tétraèdre	<i>0.285</i> → <i>0.414</i>
6	sommets d'un octaèdre	<i>0.414</i> → <i>0.732</i>
8	sommets d'un cube	0.732 → 1

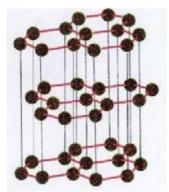
Si nous appliquons cette règle à NaCl et CsCl, nous trouvons :

coordinance 3

NaCl :	$\frac{R_{Na}}{R_{Cl}}$	=	<u>0.98</u> 1.81	= 0.54	coordinance 6 (octaèdre)
CsCl :	R _{Cs} R _{Cl}		<u>1.65</u> 1.81	= 0.91	coordinance 8 (cube)

Influence des liaisons

Nous n'avons examiné que des exemples se rapportant à un seul type de liaison, soit métallique, soit ionique. Cependant, au sein d'un même cristal, on peut observer plusieurs types de liaison. Un exemple intéressant est celui du graphite. Nous observons une structure dite en couches. A l'intérieur d'une même couche, chaque atome de carbone est entouré de trois autres atomes à des distances de 1.42 Å. La liaison est de type covalent. Chaque couche est éloignée de la sui-



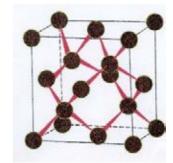
Structure du graphite

vante d'une distance de 3,4 Å. Les liaisons entre les couches est de type "van der Waals". C'est une liaison très faible. Cela explique la très faible résistance du graphite aux contraintes mécaniques et sa faible dureté.

Les liaisons covalentes ont une influence importante sur les structures car elles sont directionnelles. Ainsi, pour le diamant, une autre forme cristallisée du carbone, les atomes C présentent 4 liaisons orientées, faisant entre elles un angle de 109° 28'. Malgré que les atomes aient

tous un rayon identique, le nombre de coordination est 4. Le polyèdre de coordination est le tétraèdre. Chaque atome est à 1.54 Å de son voisin immédiat. Les liaisons

sont très fortes et il n'y a pas de zones de faiblesse comme c'est le cas pour le graphite. La cristallisation du carbone dans l'une ou l'autre de ces structures (polymorphisme du carbone), dépend des conditions de pression et de température lors de la formation du minéral. La structure du diamant, plus dense, implique des pressions de formation très élevées.



Structure du diamant

Les formules cristallochimiques

La description d'une structure au moyen du motif, de la maille élémentaire et du groupe de symétrie est importante, mais elle ne permet pas de "visualiser" les relations intimes entre atomes voisins. Aussi emploie-t-on parfois une notation particulière dite "notation de Machatchki".

On utilise la formule chimique du corps considéré en indiquant à côté de chaque atome, en exposant et entre parenthèses crochets, la coordinence. On fait précéder la formule des symboles 1/∞, 2/∞ ou 3/∞, qui précisent s'il s'agit d'une structure en chaîne, en couche ou à trois directions d'extension. La formule se termine par une lettre qui indique le système cristallin. Les formules des diverses structures que nous avons déjà mentionnées s'écrivent :

cuivre :

 $\frac{3}{\infty}$ Cu[12] c

ce qui se lit : structure cellulaire, chaque atome de Cu est entouré de 12 autres; système hexagonal.

NaCl:

 $\frac{3}{\infty}$ Na[6] CI[6] c

structure cellulaire, chaque atome de Na est entouré de six autres et réciproquement; système cubique.

Graphite:

 $\frac{2}{\infty}$ C [3] h (graphite)

structure en couches; à l'intérieur d'une couche, chaque atome de C est entouré de trois autres atomes; système hexagonal, structure de type graphite.

Si encore, dans une formule, on veut distinguer plusieurs sphères de coordination, on peut l'exprimer aisément dans l'exposant. Ainsi l'arrangement atomique du tungstène peut s'écrire :

$$\frac{3}{\infty} W^{[8]} h$$
 ou $\frac{3}{\infty} W^{[8+6]} h$

De cette manière on indique qu'au-delà de la première sphère de coordination qui comprend 8 atomes, on trouve encore 6 atomes immédiatement voisins (à une distance de 15% plus grande).

Quelques structures classiques

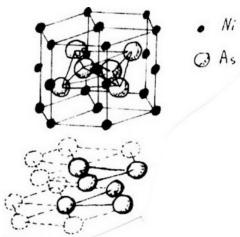
Nickeline Ni [6] As [6] h

Tout atome de Ni possède un entourage octaédrique (un peu déformé) d'atomes d'As.

Chaque atome d'As est entouré de six atomes de Ni situés aux sommets d'un prisme trigonal. D'une autre manière on peut considérer cette structure comme un assemblage compact hexagonal de gros atomes d'As. Dans les interstices octaédriques de cet assemblage prennent place les petits atomes de Ni. On trouve de nombreux composés qui cristallisent avec cette structure : NiSb, CoS, CoSe, CoTe, etc...

Il est intéressant de constater gu'on souvent le schéma d'un assemblage compact de gros atomes (généralement les anions) entre les interstices desquels se logent des atomes plus petits (les cations). Examinons l'assemblage cubique compact qui détermine

Na prennent place dans les interstices octaédriques.

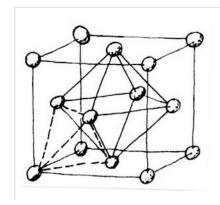


Structure de la Nickéline

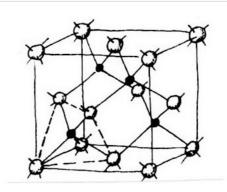
n réseau cubique à faces centrées. Nous observons qu'entre les atomes il y a des lacunes octaédriques et des lacunes tétraédriques. Notons que ces dernières sont deux fois plus nombreuses que les précédentes. En nous reportant à la structure de NaCl, nous découvrons qu'elle est constituée d'un assemblage cubique compact de gros atomes de CI et que les petits atomes de

De même, dans la structure de la blende, $Zn^{[4]}S^{[4]}$ c, est un assemblage cubique compact de gros atomes de S, les petits atomes de Zn occupant la moitié des lacunes tétraédriques. Un autre

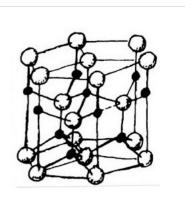
forme de sulfure de zinc. la wurtzite. $Zn^{[4]}S^{[4]}h$, est un assemblage hexagonal compact d'atomes de S, les atomes de Zn occupant également la moitié des lacunes tétraédriques.



Assemblage cubique compact

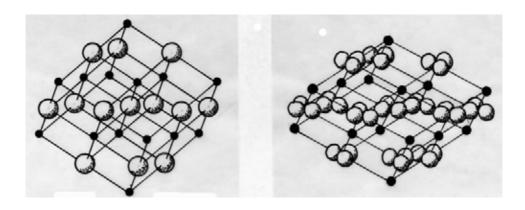


Structure de la blende, ZnS



Structure de la wurtzite, ZnS

Dans de nombreux cas, les cations sont trop gros pour occuper exactement les interstices d'un assemblage compact et les structures sont alors déformées. Beaucoup de structures peuvent se rapporter à des modèles de type assemblage compact. Par exemple, on peut "simplifier" certaines structures en considérant les radicaux anioniques comme de gros cations. Par exemple, la structure de la calcite peut être comparée à un assemblage cubique compact de radicaux CO3. Les atomes de Ca prennent place dans les interstices octaédriques. Cet assemblage est imparfait et il est un peu déformé dans le sens d'un aplatissement dans la direction de l'axe ternaire.



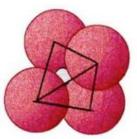
Structure de la halite, NaCl

Structure de la calcite, CaCO3

Structures des minéraux silicatés

L'oxygène et le silicium s'unissent pour former un ion complexe (ou radical anionique), constitué d'un atome central de silicium entouré de 4 atomes d'oxygène situés aux 4 sommets d'un tétraèdre. Ces atomes sont liés par des liaisons covalentes qui les unissent très fermement. A cause de sa forme, ce radical porte le nom de tétraèdre SiO₄.

Chaque atome d'oxygène possède une valence libre qui lui permet de se lier soit avec un cation, soit avec un atome de silicium d'un autre tétraèdre. Ce dernier cas permet la polymérisation des radicaux SiO4. Le mode d'association des tétraèdres permet de classer les silicates, minéraux qui consti-



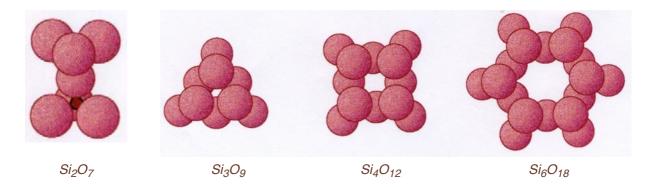
Le tétraèdre SiO4

Structure de l'olivine

Les nésosilicates, dont les tétraèdres SiO₄ sont complètement isolés les uns des autres, formant des sortes d'îlots. On parle parfois de configuration insulaire.

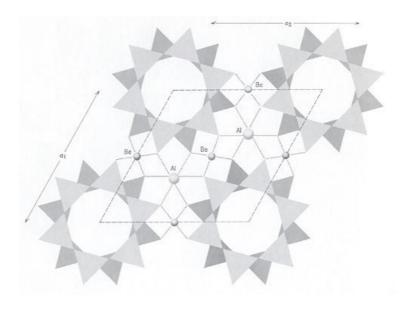
L'olivine est un exemple de nésosilicate de formule (Fe,Mg)₂SiO₄. Les groupes SiO₄ sont isolés les uns des autres. Les atomes d'oxygène constituent grossièrement un assemblage hexagonal compact. Les atomes de Fe et Mg se situent dans les lacunes tétraédriques.

Dans les sorosilicates et les cyclosilicates, les radicaux SiO₄ sont polymérisés par groupes de deux pour les premiers, de trois, quatre ou six pour les seconds.



Soro- et cyclosilicates : polymérisation des tétraèdres SiO₄ par groupes de 2, 3, 4 ou 6.

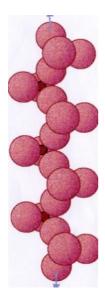
Le béryl Be₃Al₂Si₆O₁₈, est un sorosilicate caractérisé par la présence d'anneaux Si₆O₁₈. Ceux-ci sont empilés les uns au-dessus des autres, reliés entre eux par l'intermédiaire d'atomes de Be liés chacun à 4 oxygènes et d'atomes Al, liés à 6 atomes d'oxygène. Il est intéressant de noter que les canaux verticaux, qui ne sont occupés par aucun atome, peuvent héberger quelques atomes étrangers à la structure, tels Na, K, Cs ou même des gaz rares.

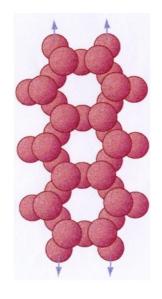


Structure du Béryl : projection sur le plan (100).

Dans les inosilicates, ou silicates en chaînes, les tétraèdres polymérisent en chaînes simples ou complexes. Ces chaînes "anioniques" ont respectivement des formules SiO₃ ou Si₄O₁₁, avec respectivement 2 et 6 charges négatives.

Les chaînes constituent les squelettes de deux importantes familles de minéraux : les pyroxènes, caractérisés par des chaînes simples SiO₃, et les amphiboles, caractérisées par des chaînes doubles Si₄O₁₁.



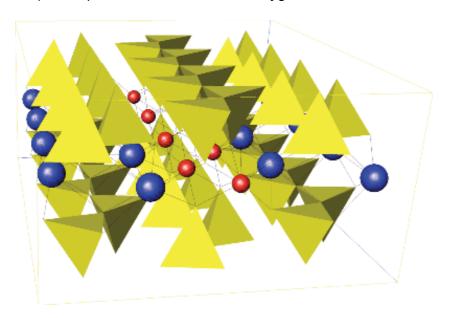


Chaîne simple : SiO₃

Chaîne double : Si₄O₁₁

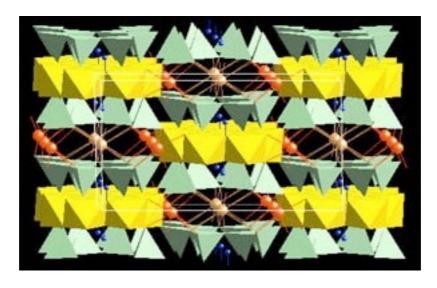
Inosilicates ou silicates en chaînes.

Sur la structure du diopside, CaMg(SiO₃)₂, un pyroxène, les chaînes simples de tétraèdres liés par leurs sommets sont vues en bout. Elles portent 2 charges négatives pour chaque SiO₃. Elles sont unies par des cations Mg hexacoordonnés (en rouge) à des atomes d'oxygène et des cations Ca (en bleu) entourés de 8 atomes d'oxygène.



Structure du diopside

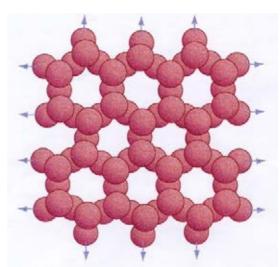
La structure de la trémolite, Ca₂Mg₅(S₄O₁₁)₂(OH)₂, est caractérisée par la chaîne double des amphiboles. Sur le dessin, les chaînes sont vues en bout. Entre les chaînes on voit les atomes de Mg situés au centre d'octaèdres (en jaune) dont les sommets sont occupés par les atomes d'oxygène des tétraèdres SiO₄ ou par des groupes OH. Le calcium (en rouge) est coordonné à 8 atomes d'oxygène.



Structure de la trémolite

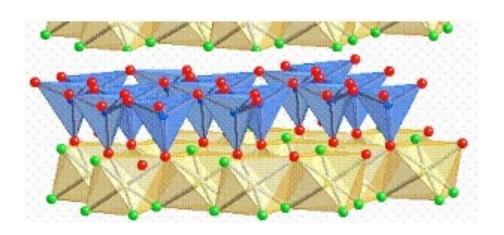
Dans les phyllosilicates, ou silicates en couches, les tétraèdres sont polymérisés dans deux directions d'extension pour former de véritables couches anioniques Si₂O₅. Les phyllosilicates ressemblent donc à des sandwiches, et ils se subdivisent en plusieurs types structuraux suivant la manière dont les couches se superposent.

Parmi ces types de structure, mentionnons celui de la kaolinite, Al₂Si₄O₁₀(OH)₈. La couche de tétraèdres est fortement liée à une couche octaédrique constituée d'un atome central d'Al lié à deux atomes d'oxygène (les atomes libres du tétraèdre) et à 4 groupes OH. Ces couches sont électriquement neutres et ne sont maintenues ensemble que par des liaisons de van der Waals. Les propriétés mécaniques



Polymérisation des tétraèdres SiO4 dans 2 directions d'extension.

de ces minéraux sont très faibles et le clivage parallèle au plan des couches est extrêmement aisé.



Structure de la kaolinite

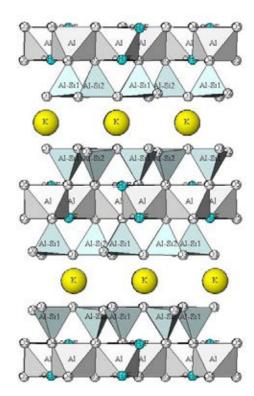
La muscovite, KAI2(AlSi3O10)(OH)2, montre une structure un peu plus complexe. Une couche d'octaèdres est prise en sandwich entre deux couches tétraédriques SiO4. On trouve un atome d'aluminium au centre des octaèdres, lié à deux atomes d'oxygène (communs aux tétraèdres) et 4 groupes OH. Les sommets des tétraèdres sont dirigés vers les octaèdres. Ces couches mixtes octaèdres/tétraèdres ne sont pas neutres car il y a substitution partielle de Si⁺⁴ par Al⁺³ dans les couches tétraédriques dans la proportion de un tétraèdre AlO4 pour 3 tétraèdres SiO4. C'est pour

cela que la couche tétraédrique est désignée par (Al-Si3O₁₀). Pour lier ces couches entre elles (et compenser l'excès de charges négatives) on trouve une couche intermédiaire de cations K. La faible liaison au niveau des atomes de potassium est responsable du plan de clivage caractéristique des micas.

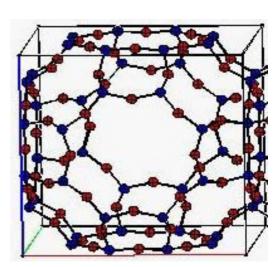
Dans les tectosilicates, les tétraèdres sont polymérisés dans les trois directions de l'espace. Chaque tétraèdre partage ses 4 atomes d'oxygène avec 4 tétraèdres voisins. La proportion est théoriquement alors SiO2, formule électriquement neutre qui correspond à celle du quartz et de ses diverses formes polymorphes (tridymite, cristobalite..). Là aussi, le remplacement partiel du silicium par l'aluminium au centre des tétraèdres, permet d'admettre divers cations dans la structure. Ainsi, dans l'importante famille des feldspaths, on trouve l'orthose K(AlSi3O8), l'albite Na(AlSi3O8), dans lesquels la substitution d'un atome de Si par un atome d'Aluminium dans un tétraèdre sur quatre, permet l'introduction d'un atome monovalent dans la structure (K, Na). Il faut un taux de substitution plus élevé (1:2), pour permettre l'arrivée de cations bivalents. C'est le cas de l'anorthite, Ca(Al₂Si₂O₈).

La sodalite montre une structure cellulaire de tétraèdres SiO4. Un remplacement de la moitié des atomes de Si par des atomes d'Al permet d'incorporer dans la structure des atomes Na et de Cl, aboutissant alors à la structure de la sodalite Na₄Cl(SiAlO₄)₃. Les atomes de Cl prennent alors place aux sommets et au centre du cube, les atomes de Na sur les diagonales internes du cube, à diverses hauteurs.

Disposition des tétraèdres SiO4 dans la structure de la sodalite



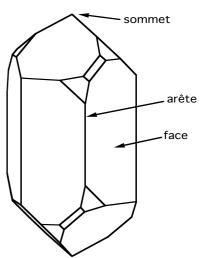
Structure de la muscovite



X. Aspect et propriétés des minéraux

Les minéraux ne présentent que rarement les belles formes cristallines. Ce sont le plus souvent des grains informes (surtout lorsqu'ils apparaissent comme éléments constitutifs des roches), des masses mamelonnées, feuilletées, des stalactites, des encroûtements, etc... On réserve donc le nom de cristal à ceux qui montrent une forme cristalline sur laquelle on distingue des faces, des arêtes et des sommets.

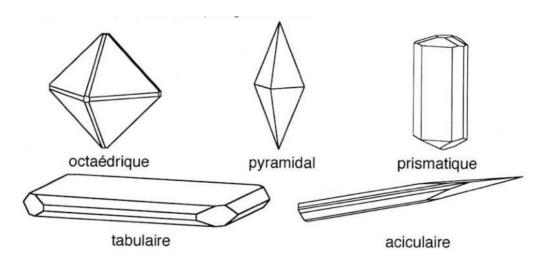
Toutefois, même si la plupart des minéraux ne montrent pas de formes cristallines bien développées, il présentent tout de même un certain nombre de caractères **organoleptiques**¹ et des propriétés physiques qui permettent de les décrire. Les propriétés chimiques, physiques, optiques et cristallographiques ne sont pas discernables directement par les organes des sens et il faut recourir à des instruments de mesure pour les déterminer. L'aspect exté-



rieur des minéraux, directement observable à l'oeil, dépend globalement de l'ensemble de ces propriétés mais ne permet en aucune manière de les définir, tant la variabilité de leur aspect est grand d'un gisement à l'autre pour une même espèce minérale. Aussi, dans les lignes qui vont suivre, nous décrirons tout d'abord les aspects extérieurs des minéraux puis leurs propriétés physiques tout en faisant ressortir les liens qui relient ces deux entités

Habitus

L'habitus décrit les différentes formes, propres à chaque minéral. Pour décrire ces particularités on utilise divers qualificatifs précisant la forme cristalline, un aplatissement ou un allongement. On parle alors d'habitus octaédrique, pyramidal, prismatique ou encore d'habitus isométrique, allongé, prismatique, aciculaire, tabulaire, etc...



Quelques adjectifs utilisée pour qualifier un habitus

Les minéraux ne sont isométriques que s'ils appartiennent au système cubique. Ceux des autres systèmes cristallins montrent souvent un aplatissement ou un allongement dans une direction pré-

¹ Perceptible par les sens

férentielle. Il est intéressant de noter que, structuralement, la tendance à l'allongement d'un minéral correspond à une direction d'aplatissement de sa maille élémentaire. De même une maille allongée provoque l'aplatissement du minéral. En effet, nous avons vu précédemment que la fréquence d'apparition d'une face dépendait de la densité réticulaire du plan correspondant. Les faces les plus développées sont donc celles auxquelles correspondent les plans de plus grande densité réticulaire. Ces derniers sont caractérisés aussi par des distances réticulaires plus grandes. Une maille élémentaire allongée va provoquer un développement plus marqué des faces normales à cet allongement. Le tableau ci-dessous illustre de phénomène.

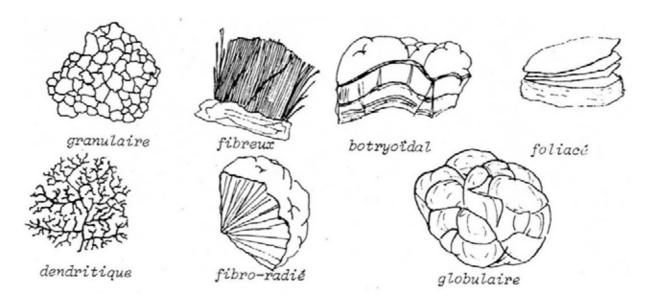
Habitus de quelques minéraux en fonction des dimensions de leur maille élémentaire.

minéral	а	b	С	aspect
tourmaline	15.8		7.1	prismatique selon c
actinote	9.84	18.1	5.28	aciculaire selon c
rutile	4.59		2.98	allongé selon c
muscovite	5.19	5.19 9.03		aplati selon c
hématite	5.04		13.78	tabulaire selon c
gypse	5.68	15.18	6.29	aplati selon b

Il est intéressant aussi de souligner qu'une même espèce minérale peut apparaître avec des habitus différents suivant les conditions de pressions et de températures dans lesquelles elle s'est formée ou sous l'influence d'une très légère modification de sa composition chimique. Ainsi le béryl qui forme des prismes hexagonaux allongés lorsqu'il est vert (variété émeraude), ne donne plus que des prismes trapus lorsqu'il est rose (variété morganite) et devient franchement tabulaire lorsqu'il est incolore (variété goshenite).

Groupement de minéraux

Lorsque les minéraux sont groupés, on leur attribue à leur façon de s'associer des qualificatifs évocateurs : massif, granulaire, fibreux, fibro-radié, foliacé, dendritique, stalactitique, globulaire...



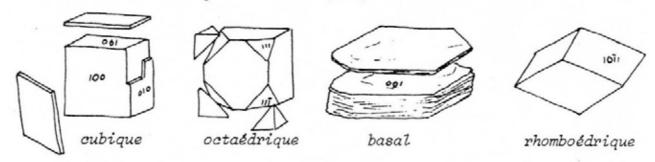
Quelques adjectifs qui qualifient les habitus de groupement de minéraux

Clivage

De nombreux minéraux présentent la propriété de se débiter selon des plans précis lorsqu'on exerce sur eux une pression mécanique. Ce phénomène est particulièrement bien marqué pour les cristaux de calcite qui se débitent en rhomboèdres et pour les micas qui se débitent en feuillets. Les plans de clivage correspondent, au niveau de la structure, à des directions de liaison faible entre les atomes. Comme les propriétés physiques sont aussi soumises aux lois de la symétrie, une direction de plan de clivage unique ne peut exister que dans des minéraux à basse symétrie

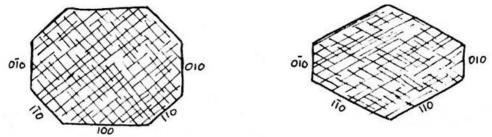
Dans les autres cas, ils sont obligatoirement répétés par les éléments de symétrie du minéral. Ainsi on pourra observer un clivage cubique, octaédrique, rhomboédrique etc... Un clivage est dit facile ou difficile selon le degré de l'effort mécanique qu'il a fallu exercer pour l'obtenir.

On parle aussi de clivage parfait si la surface obtenue est bien lisse et réfléchissante comme un miroir. Il est dit imparfait lorsque le plan obtenu ne réfléchit qu'imparfaitement un signal lumineux.



Quelques adjectifs utilisés pour définir divers types de clivages

L'examen des plans de clivage est parfois important pour le diagnostic d'une espèce minérale. Par exemple, la distinction entre les minéraux des importantes familles des pyroxènes et des amphiboles peut se faire en examinant l'angle dièdre que forme les clivages {110} : environ 90° chez les pyroxènes contre 120° chez les amphiboles.

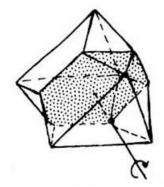


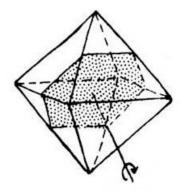
Section prismatique d'un pyroxène Section prismatique d'une amphibole Distinction des pyroxènes et des amphiboles par l'angle des clivages

Les macles

Le plus souvent, les agrégats de cristaux d'une même espèce cristalline s'agencent entre eux d'une manière quelconque. Parfois cependant, on observe des cristaux qui font penser à des "frères siamois": deux par deux, ils sont soudés l'un à l'autre avec une orientation mutuelle qui est toujours la même. On parle de cristaux maclés. Une étude plus attentive permet de déterminer les lois de macle, qui décrivent du point de vue géométrique l'orientation mutuelle des deux individus. Les cristaux sont soit accolés par un plan commun, le plan de macle, soit interpénétrés. Dans le cas de la macle du spinelle, on peut facilement identifier le plan de macle, le plan commun, et un opérateur de symétrie, l'axe de macle qui, dans le cas présent, est un axe binaire perpendicu-

laire au plan. Un des individus a donc effectué une rotation de 180° autour de l'axe de macle. Le plan de macle est un plan de symétrie de la macle.





aspect des individus maclés

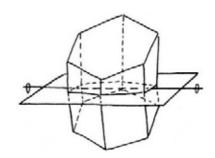
reconstitution de l'octaèdre par rotation

Loi de macle du rutile. On distingue le plan de macle et l'axe de macle.

Il faut remarquer que le plan de macle ne peut pas être un plan de symétrie du cristal et que l'axe de macle ne doit pas être un axe binaire.

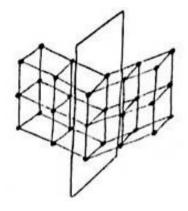
La macle de la **péricline**, fréquente chez les plagioclases, montre un axe de macle situé non plus perpendiculairement au plan de macle, mais contenu dans celui-ci. Le plan d'accolement n'est plus le plan de symétrie de la macle. Il fait partie de la zone parallèle à [010] mais ne correspond à aucune face du cristal.

Lorsqu'on étudie attentivement les lois de macles on distingue trois types distincts :



Macle dite "de la péricline": l'axe de macle est parallèle au plan de macle.

- L'hémitropie normale : l'axe de macle est normal à une face possible du cristal qui devient le plan de macle. Ce dernier est aussi le plan d'association.
- 2. L'hémitropie parallèle : l'axe de macle est une arête possible du cristal (axe de zone). Il est situé dans le plan d'accolement des individus maclés. Ce dernier n'est pas forcément une face possible du cristal
- 3. Les macles complexes : l'axe de macle est normale à une arête possible du cristal. Il est situé dans le plan d'accolement.

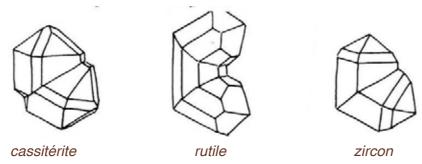


L'hémitropie normale est le cas le plus fréquent. Les deux autres cas sont beaucoup plus rares. Du point de vue structural, les réseaux bipériodiques déterminés par les noeuds des deux surfaces d'accolement (une par individu), doivent coïncider à leur contact.

Coïncidence des noeuds sur le plan commun d'individus maclés.

Les macles sont fréquentes et leur reconnaissance est une aide utile pour l'identification des minéraux. On leur a attribué des noms évocateurs tirés soit du gisement où elles ont été décrites pour la première fois, soit de la forme à laquelle elles font penser : macle de Carlsbad, macle en

genou, macle en fer de lance, macle en croix etc... La macle en genou concerne trois minéraux quadratiques, la cassitérite, le rutile et le zircon. Le plan de macle est (011) et il s'agit d'une hémitropie normale.

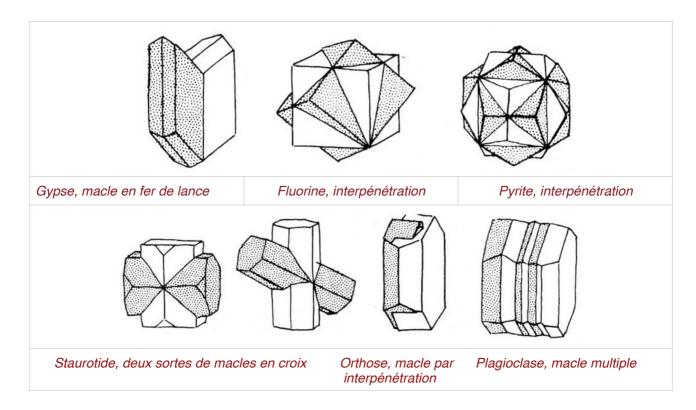


La macle dite "en genou". Le rutile peut présenter plusieurs individus successifs.

Il est très rare de rencontrer un groupe maclé complet. Par contre, on trouve souvent des fragments de minéraux sur lesquels on peut reconnaître la présence d'une macle. L'exemple le plus frappant est celui de la cassitérite sur laquelle on voit un angle rentrant, seul témoin évident de la présence d'une macle. C'est le fameux "bec d'étain".

Souvent les individus s'interpénètrent et il n'est plus possible de reconnaître un plan d'accolement. La fluorine, par exemple, montre des cubes interpénétrés avec un axe de macle confondu avec un des axes de symétrie ternaires. De même on trouve deux dodécaèdres pentagonaux de pyrite parfaitement interpénétrés. L'axe de macle est un des axes binaires et la rotation est de 90°.

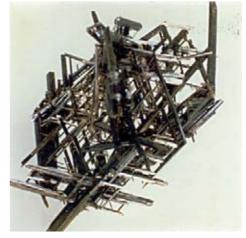
Dans le cas de la staurotide on a deux macles "en croix" possibles. Les 2 plans de macles possibles sont parallèles soit à {032}, soit à {232}. L'orthose montre fréquemment la macle de Carlsbad: les deux individus interpénétrés sont accolés par un plan irrégulier parallèle à (010), l'axe de macle étant [001]. On a parfois, en particulier dans les feldspaths, des macles multiples comportant plus de deux individus. Si on observe toute une série d'individus maclés, parallèles les uns aux autres, répètant alternativement la même loi, on parle de macle polysynthétique. L'albite montre de pareilles macles. Il s'agit d'une hémitropie parallèle dont l'axe de macle est [001].



Dans certains cas on observe un réseau de nombreux individus orientés les uns par rapport aux

autres selon une loi géométrique bien précise. Le rutile, TiO2, en est l'exemple le plus frappant : on peut rencontrer ce minéral sous forme d'un réseau serré d'aiguilles entrelacées dans un même plan, parallèles à 3 directions orientées à 120° l'une de l'autre. C'est Horace-Bénédict de Saussure qui a décrit le premier cette association. Il l'a baptisée sagénite, du latin sagena, la grille.

Il arrive, beaucoup plus rarement, que deux espèces minérales différentes s'associent selon une loi géométrique bien définie. Une telle association porte le nom d'épitaxie. Une des plus connues est l'association du Rutile (TiO₂) et de l'hématite (Fe₂O₃). La face (110) du rutile est en contact avec la face (0001) de l'hématite.

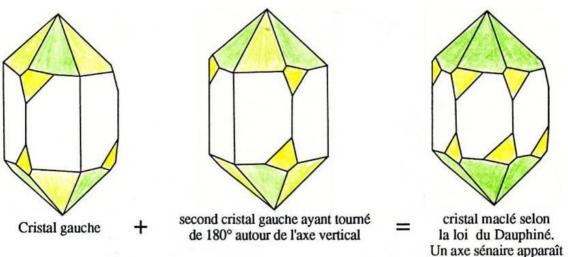


Sagenite : cas particulier de rutile ma-

Les macles du quartz

Les cristaux de quartz sont très fréquemment maclés mais, paradoxalement, les macles courantes sont difficiles à observer car les cristaux jumelés sont complètement interpénétrés et ce n'est que la répétition insolite de certaines faces spécifiques (le trapézoèdre, par exemple) qui permet de déceler la présence d'une macle. Les macles les plus fréquentes sont celles dites "du Dauphiné" où un des individus a effectué une rotation de 180° autour de l'axe vertical, ainsi que celle "du Brésil" où l'un des individus est répété par réflexion sur un plan vertical. Mais la plus connue et la plus facile à observer, (bien qu'elle soit rare) est la macle du Japon (ou de la Gardette) constituée de deux individus ayant une face prismatique commune et dont les axes du prisme forment un angle de 84°.

La macle du Dauphiné est la plus fréquente. Elle n'est décelable qu'en présence des faces du trapézoèdre. L'axe vertical se transforme alors en un axe sénaire.

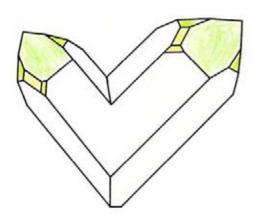


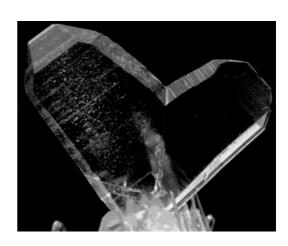
La macle du Brésil est moins fréquente que la précédente. Elle n'est décelable qu'en présence des faces du trapézoèdre. La symétrie nouvelle fait apparaître des plans de symétrie verticaux.

cristal devenu gauche par réflexion sur un miroir vertical

cristal maclé selon la loi dite "du Brésil". Apparition de trois plans de symétries verticaux.

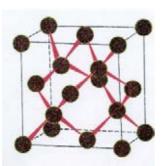
La macle du Japon est très rare mais elle est immédiatement reconnaissable. Les deux individus ont une face prismatique commune et les axes des prismes font entre eux un angle de 84°33'.



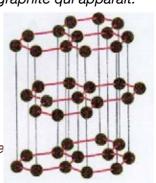


Le polymorphisme

Pour une même composition chimique on observe parfois des structures cristallines différentes : c'est le polymorphisme. L'exemple le plus frappant est celui du carbone qui, suivant la façon dont les atomes sont arrangés, peut donner des minéraux aussi différents que le diamant et le graphite. Pour un même composé chimique ce sont les conditions de cristallisation qui déterminent l'apparition d'une structure plutôt qu'une autre. Pour cristalliser dans sa forme cubique, le diamant a besoin d'une pression énorme alors qu'à faible pression c'est la structure du graphite qui apparaît.



structure du diamant



structure du graphite

Un autre exemple bien connu est celui du carbonate de calcium CaCO₃ qui cristallise le plus souvent dans le système rhomboédrique sous forme de calcite, plus rarement dans le système orthorhombique : l'aragonite. A ce propos, notons un phénomène assez curieux : les coquilles des oeufs des oiseaux sont en calcite, celles des reptiles en aragonite !

L'oxyde de titane TiO₂ cristallise habituellement sous forme de rutile, quadratique. Mais on peut le trouver également sous forme d'anatase, également quadratique mais avec des paramètre différents, ou encore sous forme de brookite, orthorhombique.

Certaines formes sont instables. La marcassite (FeS_2), orthorhombique, se forme dans des conditions particulières à basse température. Elle se transforme rapidement en pyrite (cubique) si on la chauffe. Cette opération n'est pas réversible.

Par contre le quartz (rhomboédrique), forme stable de la silice à température ordinaire, se transforme en tridymite orthorhombique si on le chauffe au dessus de 867, puis en cristobalite au dessus de 1470°. Ces transformations sont réversibles si le refroidissement n'est pas trop rapide.

L'isomorphisme

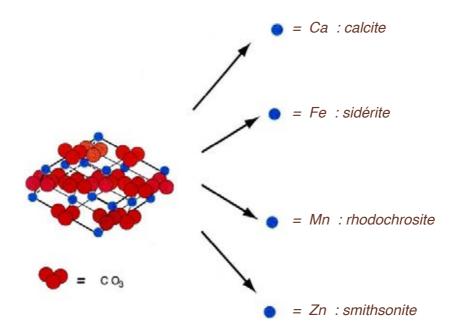
C'est la propriété que présentent certains composés chimiques différents de cristalliser dans une même structure. Les compositions chimiques sont généralement analogues et les constantes cristallographiques sont très proches, L'exemple le plus connu est celui des carbonates. Certains cristallisent dans le système rhomboédriques, d'autres dans le système orthorhombique. Voici ces deux séries :

Série rhomboédrique					
Minéral	Chim.	rayon cation			
magnésite	Mg CO3	0.66			
sidérite	Fe CO3	0.74			
rhodochrosite	Mn CO3	0.8			
smisthsonite	Zn CO3	0.74			
calcite	Са СОз	0.99			

Série orthorhombique					
Minéral	Chim.	rayon cation			
aragonite	Са СОз	0.99			
strontianite	Sr CO3	1.12			
whitérite	Ва СОз	1.34			
cérusite	Рь СОз	1.2			

Nous avons déjà comparé la structure de la calcite à un assemblage cubique compact déformé (⇒ rhomboédrique) des radicaux CO3 avec les ions Ca logés dans les interstices octaédriques. Les structures de la magnésite, la sidérite, la rhodochrosite et la smithsonite sont obtenues par substitution de cation bivalent Ca, par Mg, Fe, Mn ou Zn.

Les autres cations bivalents (Sr, Ba, Pb) sont trop volumineux pour entrer dans cette structure. Elle se déforme alors et se transforme en une structure hexagonale compacte déformée (\Rightarrow orthorhombique) dont les cations occupent toujours les interstices octaédriques. Ca CO3. L'ion Ca, qui possède un rayon proche de la limite, peut cristalliser dans l'une ou l'autre structure (calcite ou aragonite) suivant les conditions de formation du minéral.

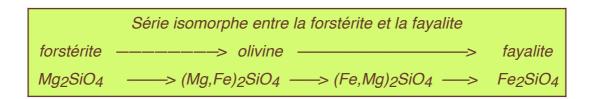


Structure des carbonates rhomboédriques : les groupes CO3 forment entre eux une structure pseudo-cubique compacte.

Les séries isomorphes

On peut élargir cette notion d'isomorphisme à celle de **série isomorphe**. Parmi les carbonates rhomboédriques, on remarque que les deux cations, Fe et Mg, peuvent se remplacer indifféremment, c'est à dire qu'on peut avoir un carbonate avec n'importe quelle proportion Fe/Mg. On pourrait écrire la formule (Fe,Mg) CO₃. On dit alors que la magnésite et la sidérite forment ensemble une série isomorphe complète.

Ces deux cations (Fe, Mg), très proches par leur taille et leur structure électronique, peuvent se remplacer dans plusieurs séries isomorphes. On connait bien la série des péridots, (Fe,Mg)₂SiO₄, dont les termes extrêmes sont la fayalite (Fe) et la forstérite (Mg), le terme intermédiaire le plus connu étant l'olivine.



D'autres séries sont incomplètes, dans les quelles il n'existe qu'un seul terme intermédiaire comme la dolomite CaMg(CO₃)₂, renfermant Ca et Mg en proportions égales.

La série isomorphe la plus connue est celle des plagioclases dont les termes extrêmes sont l'albite NaAlSi3O8, et l'anorthite CaAl2Si2O8. Cette série est intéressante car il s'agit du remplacement d'un cation monovalent par un autre bivalent. Cela est rendu possible par la substitution progressive d'atomes de Si par Al, dans le tétraèdre SiO4.

	Les plagioclases (ou feldspaths calco-sodiques					
albite	oligoclase	andésine	labrador	Bytownite	anorthite	
0-10% an 10-30% an 30-50% an 50-70% an 70-90% an 90-100% an						
$NaAlSi_3O_8$ ————————————————————————————————————						
diminution de la teneur en silice→						
	Les plagioclases proches de l'albite se trouvent dans les roches riches en silice, ceux proches de l'anorthite caractérisent les roches pauvres en silice.					

Les minéraux ne sont pas toujours bien dans leur peau

Certains minéraux présentent parfois des formes étrangères à leur propre symétrie. Ce sont des pseudomorphoses. Elles sont dues à la transformation chimique d'une espèce minérale en une autre, sans modification de sa forme extérieure. L'ancienne forme joue en quelque sorte le rôle d'un moule à l'intérieur duquel la transformation s'est effectué. Des cubes de pyrite, FeS₂ peuvent, par exemple, s'oxyder en goethite, FeO(OH) tout en conservant la forme originelle du cube.

Quelques pseudomorphoses classiques				
minéral nouveau	minéral remplacé			
quartz goethite malachite pyromorphite talc	calcite, fluorine, asbeste, talc pyrite, sidérite, magnétite cuprite, azurite galène quartz			

On peut rapprocher ce phénomène de celui de la fossilisation : une ammonite pyritisée peut être considérée comme de la pyrite qui a "emprunté" la forme d'une ammonite. Un cas intéressant est celui de la variété de silice connue sous le nom d'œil-de-tigre qui est le résultat de la silicification plus ou moins complète de la crocidolite, une amiante bleue : c'est du quartz qui a conservé la structure fibreuse de l'amiante. Suivant le degré d'oxydation, les résidus ferreux qui subsistent encore, confèrent à l'œil-de-tigre des teintes brun à jaune doré avec des zones bleuâtres pour les parties les moins oxydées.

Ammonite pyritisée

Talc, pseudomorphose de quartz

L'anisotropie

L'état cristallin se distingue de l'état amorphe (verre, certains plastiques) par l'anisotropie qui affecte la plupart de ses propriétés physiques. En clair, cela signifie que les propriétés sont différentes suivant la direction dans laquelle on les considère. L'aspect le plus évident de cette anisotropie est la vitesse de croissance des faces d'un cristal. Si la vitesse de croissance était identique dans toutes les directions, on aboutirait à la formation de sphères! C'est justement la variation discontinue de la vitesse de croissance d'un minéral selon la direction qui est responsable de la forme des cristaux.

Le degré d'anisotropie des propriétés physiques est différent d'une espèce minérale à l'autre. Il dépend étroitement de leur structure et de leur symétrie. Les minéraux appartenant au système cubique font exception à cette règle : la plupart de leurs propriétés physiques sont isotropes.

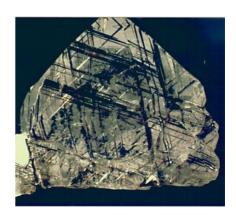
Aspect des faces

Les faces des cristaux ne sont pas toujours parfaitement planes et brillantes. Elles peuvent être aussi mates, rugueuses, striées. Elles peuvent même présenter une apparence courbe due à une croissance en gradins. L'aspect des faces peut parfois nous renseigner sur la symétrie du cristal. Par exemple, les faces des cubes de pyrite sont souvent striées parallèlement aux arêtes. Cela indique que les axes de symétrie perpendiculaires aux faces de ce cube ne sont pas des axes d'ordre 4, mais seulement des axes binaires!

Les inclusions

Lorsqu'un minéral se forme relativement rapidement (dans le cas des pegmatites, par exemple), la croissance n'est pas toujours uniforme, et de nombreuses inclusions viennent voiler la limpidité des cristaux. Ce sont souvent de minuscules inclusions liquides, solides ou gazeuses qui sont les reliques des éléments nourriciers qui ont assuré la croissance du minéral et qui sont restées emprisonnées dans le cristal. Les inclusions sont souvent mixtes, gouttelette renfermant une bulle de gaz avec parfois même un petit cristal libre, isolé dans le liquide. On parle alors d'inclusion à une, à deux ou à trois phases.

Dans d'autres cas, un minéral en voie de formation a simplement inclus des cristaux qui existaient déjà auparavant. L'exemple le plus connu est celui des aiguilles de rutile qu'on trouve fréquemment dans le quartz.



Aiguilles de rutile dans dans du quartz

Le poids spécifique

C'est le poids d'une unité de volume. On l'exprime en grammes par centimètre cube [g/cm³]. Quant à la densité d'un minéral, c'est le rapport de son poids spécifique à celui de l'eau. Les deux valeurs sont les mêmes, à ceci près que la densité est exprimée par un nombre sans unité. Il est utile de savoir qu'en anglais, "specific gravity" correspond à notre définition de la densité!

Le poids spécifique d'un minéral dépend directement de sa composition chimique et de sa structure. Il correspond au poids de tous les atomes contenus dans la maille élémentaire, divisé par le volume de celle-ci. Par exemple, pour les divers polymorphes de la silice on observe les poids spécifiques suivants :

minéral	P.sp.	minéral	P.sp.
trydimite	2.26	quartz	2.65
cristobalite	2.32	coesite	2.93

Les atomes sont donc plus serrés à l'intérieur de la coesite qu'à l'intérieur de la trydimite. Cela fait apparaître la notion de coefficient de remplissage P.I. (en anglais packing index) :

Packing index =
$$\frac{\text{volume des ions}}{\text{volume de la maille}} \times 10$$

Pour les formes polymorphes de TiO2 et Al2SiO5, nous obtenons ainsi :

		P. sp.	P.I.
	rutile	4.25	6.6
TiO ₂	brookite	4.14	6.4
	anatase	3.9	6.3

		P. sp.	P.I.
	disthène	3.63	7
Al ₂ SiO ₅	sillimanite	3.24	6.2
	andalousite	3.15	6

Il est bien évident que le poids atomique des atomes constitutifs est responsable pour une grande part du poids spécifique des minéraux, comme le montre le tableau suivant :

Minéral	Chim.	P. sp.	P. A.
aragonite	CaCO ₃	2.93	40
strontianite	SrCO ₃	3.78	87.6
whitérite	BaCO ₃	4.31	137.3
cérusite	PbCO ₃	6.58	207

Il est possible de calculer le poids spécifique d'un minéral en partant du volume de la maille élémentaire et de son remplissage. Pour la halite, la maille est un cube de 5.6402 Å d'arête et elle renferme 4 atomes de Na et 4 atomes de Cl. Connaissant les poids atomiques de ces deux éléments nous calculons :

Poids spécifique_{calc.} =
$$\frac{4 \times (22.9898 + 35.453)}{(5.6402 \times 10^{-8})^3 \times (6.025 \times 10^{23})} = 2.164 \text{ gr/cm}^3$$

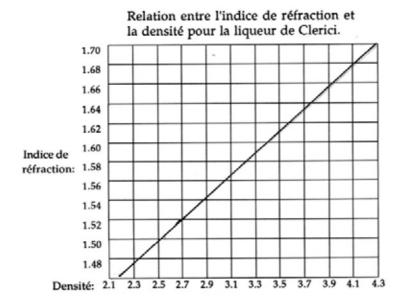
En pratique, c'est la densité qu'on mesure en comparant le poids d'un échantillon avec le poids du volume d'eau qu'il déplace. La densité mesurée ne correspond pas toujours au poids spécifique calculé. En effet, les minéraux n'ont pas toujours la composition chimique idéale qu'on leur attribue, car il y a fréquemment de petites substitutions entre atomes du même type. La formule idéalisée de la blende est bien ZnS. Toutefois, si on effectue une analyse chimique précise on trouve presque toujours de petites quantités de Fe et de Mn qui remplacent partiellement Zn.

La densité de certains minéraux fournissent des renseignements intéressants sur leur composition chimique. La colombo-tantalite, (Fe,Mn)₂(Cb,Ta)₂ O₆, constitue une série isomorphe complète entre la columbite, (Fe,Mn)₂Cb₂O₆, de densité 5.20, jusqu'à la tantalite, (Fe,Mn)₂Ta₂O₆, de densité 7.80. L'augmentation de la densité est presque linéaire en regard de la teneur en Ta₂O₆. On peut donc connaître approximativement la proportion de tantalite dans la columbo-tantalite par la relation :

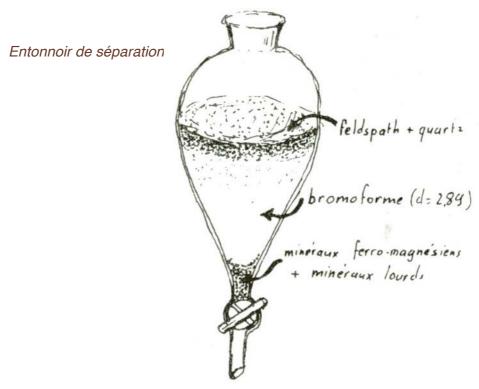
La mesure de la densité n'est pas toujours aisée car il est souvent difficile d'isoler un fragment de minéral auquel n'adhère aucune impureté. Si le grain obtenu est suffisant volumineux, on utilise une balance de précision équipée d'un double plateau, le plateau inférieur étant immergé dans de l'eau. On effectue la double pesée et on calcule la densité par la relation bien connue :

Densité =
$$\frac{P_{air}}{P_{air} - P_{eau}}$$

Si le grain est très petit on utilise des liqueurs denses, en particulier la liqueur de Clerici (d = 4.) qu'on peut diluer avec de l'eau en toutes proportions. Pour cela on utilise un très petit tube à essai. On dilue lentement la liqueur avec de l'eau jusqu'au moment où le grain ni ne flotte, ni ne sombre, mais reste immobile au milieu du mélange. Le mélange possède alors la même densité que l'échantillon. Pour connaître la densité de la liqueur on utilise le fait que son indice de réfraction varie sensiblement en fonction de sa densité. On en mesure donc l'indice au moyen d'un réfractomètre et on en tire la densité à l'aide du tableau ci-dessous :



L'emploi des liqueurs denses reste limité aux densités inférieures à 4.3. Par ailleurs elles sont d'un emploi délicat en raison de leur toxicité élevée. Elles peuvent servir à séparer des fractions minérales, en particulier elles permettent de séparer les feldspaths et le quartz d'une part, des éléments ferro-magnésiens et des minéraux denses d'autre part.



Quelques liqueurs d'emploi courant					
dens. diluable dans :					
bromoforme	CHBr ₃	2.89	benzène		
tétrabrométhane	C ₂ H ₂ Br ₄	2.96	benzène		
iodure de méthylène	CH ₂ I ₂	3.32	toluol, benzène		
liqueur de Clerici 4.28 eau					

La dureté

La dureté reflète la résistance de la structure cristalline à des efforts mécaniques. Pratiquement c'est la résistance à la rayure. Un minéral est dit plus dur qu'un autre minéral lorsqu'il raye ce dernier. La mesure de la dureté est empirique et se fait par comparaison avec 10 minéraux de référence qui constituent l'échelle de dureté dite de Mohs. La mesure de la dureté est facile. Quand on dit que la pyrite a une dureté de 6.5, c'est qu'elle raye l'apatite mais est rayée par le quartz.

Echelle de dureté de Mohs					
1	talc	6	apatite		
2	gypse	7	quartz		
3	calcite	8	topaze		
4	fluorine	9	corindon		
5 orthose 10 diamant					

Cette échelle a été établie en 1822 par le minéralogiste autrichien Friedrich Mohs. Une estimation grossière de la dureté peut se faire avec une lamelle de verre ($d \approx 5.5$) et l'ongle ($d \approx 3$). La dureté dépend de la structure du minéral, de la taille des atomes qui le constituent, du type de liaison atomique et de la compacité de la structure. Dans la série des carbonates rhomboédriques la dureté augmente avec la diminution de la taille des cations :

		Ø ion	dureté
calcite	CaCO ₃	0.99	3
rhodochrosite	MnCO₃	0.8	4
sidérite	FeCO ₃	0.74	4 - 4.5
smithsonite	ZnCO ₃	0.74	4 - 4.5
magnésite	MgCO ₃	0.66	4.5

Boîte construite par un amateur renfermant les minéraux de dureté de 2 à 9. Elle comprent aussi une plaquette de porcelaine, une plaquette de verre (d =5.5), un petit chalumeau et un ensemble de tiges serties de minéraux pour les duretés de 5.5 à 9.

Tiges serties de minéraux dont la dureté va de 5.5 à 9

Les polymorphes de la silice présentent une augmentation de la dureté parallèle à l'augmentation de la densité : la dureté diminue aussi considérablement lorsque les minéraux renferment des groupes hydroxyles OH ou des molécules d'eau. Un bon exemple est celui des oxydes d'aluminium.

	dens.	dureté
tridymite	2.26	6.5
cristobalite	2.32	6.5
quartz	2.65	7
coesite	2.93	7.5

		dens	dureté
corindon	Al ₂ O ₃	4	9
diaspore	AIO(OH)	3.4	7
gibbsite	AI(OH) ₃	2.4	3

Anisotropie de dureté

Un des seuls exemples d'anisotropie de dureté concerne le disthène. Ce minéral forme des cristaux tabulaires allongés. La dureté mesurée sur la face aplatie est de 4.5 dans le sens de l'allongement, et de 7 dans la direction perpendiculaire à celui-ci.

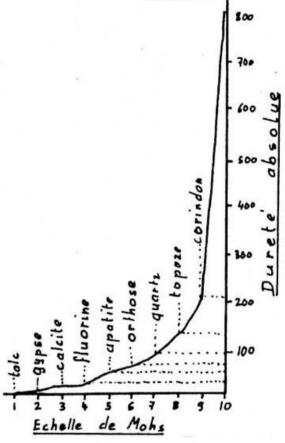
Disthène

Dureté relative, dureté absolue

On peut mesurer la dureté d'une manière quantitative plus rigoureuse qu'avec l'échelle empirique de Mohs. On mesure, par exemple, soit le diamètre de l'empreinte laissée par la pression d'un cône de diamant appliqué avec une force connue. On peut aussi mesurer la force qu'il faut appliquer pour obtenir une empreinte de dimension constante.

On constate que les duretés absolues des minéraux choisis par Mohs augmentent selon une progression géométrique.

Relation entre l'échelle de Mohs et une échelle de dureté absolue.



dimant

La fusibilité

C'est la plus ou moins grande facilité que présentent les minéraux à fondre sous l'effet de l'élévation de la température. Il est difficile de parler de point de fusion comme pour les métaux. En effet les minéraux restent souvent pâteux entre des limites de température assez grandes ou ils se décomposent avant d'atteindre l'état liquide, ou bien encore ils se transforment en une autre phase minérale.

Malgré ces considérations, les minéralogistes ont créé une échelle de fusibilité un peu arbitraire qui subdivise les minéraux en sept échelons se référant à sept minéraux de comparaison. La mesure n'est pas toujours aisée. Il faut sélectionner une fine esquille du minéral et en exposer l'extrémité la plus fine au sommet de la flamme d'un petit chalumeau.

Test de fusibilité :

Esquille tenue à l'extrémité d'une pince et exposée à la flamme d'un petit chalumeau

Echelle de fusibilité des minéraux

1	stibine	fond immédiatement à la moindre flamme dans un tube fermé (575°)
2	chalcopyrite	fond aisément au chalumeau mais difficilement sur une flamme lumineuse (bougie) ou dans un tube fermé (env. 800°).
3	almandin	fond facilement au chalumeau mais ne fond ni dans un tube fermé, ni dans une flamme lumineuse (1050°).
4	actinote	les arêtes de l'esquille fondent rapidement mais les parties plus massives fondent peu ou pas du tout.
5	orthose	les arêtes de l'esquille fondent difficilement; les parties plus massives ne sont que légèrement arrondies (1300°).
6	enstatite	seules les parties les plus aiguës des arêtes sont arrondies (env. 1400°)
7	quartz	infusible au chalumeau.

Les propriétés optiques

Nous n'envisageons ici que l'aspect macroscopique des propriétés optiques et laissons à des ouvrages plus spécialisés l'étude de l'optique cristalline proprement dite.

La transparence

Nous ne décrirons ici que les propriétés optiques des minéraux dont les effets sont perceptibles à l'oeil nu mais nous n'aborderons pas l'optique cristalline qui implique l'emploi de divers appareils, en particulier du microscope polarisant.

En premier lieu on distingue les minéraux **transparents** de ceux qui sont **opaques**. Les premiers se laissent traverser par la lumière alors que les seconds l'arrêtent plus ou moins complètement. La limite n'est pas franche. La notion de transparence est subjective et dépend beaucoup de la puissance des moyens d'investigations utilisés. La plupart des minéraux constitutifs des roches sont transparents, vus en section mince (0.03 mm), sous le microscope, bien que beaucoup d'entre eux semblent opaques à l'oeil nu.

C'est parmi les sulfures et les oxydes métalliques qu'on rencontre les minéraux vraiment opaques, alors que la plupart des minéraux des autres classes sont transparents.

C'est l'absorption plus ou moins sélective de la lumière par les minéraux qui détermine leur transparence, leur opacité et leur couleur. L'indice de réfraction, associé aux diverses propriétés d'opacité et d'absorption, est responsable de l'éclat d'un minéral, c'est-à-dire son aspect plus ou moins brillant, chatoyant ou terne.

La couleur est trompeuse

La couleur est un des caractères le plus souvent utilisés dans la description des minéraux. Il faut toutefois être très prudent dans l'utilisation de ce critère car, si beaucoup de minéraux ont une couleur propre, de nombreux autres peuvent prendre des colorations très différentes d'un gisement à l'autre. Les premiers sont dits idiochromatiques, les seconds allochromatiques.

Les minéraux idiochromatiques possèdent dans leur structure un élément chimique - dit chromatophore - directement responsable de la couleur. Ce sont Fe, Ti, V, Cr, Mn, Co, Ni et Cu. Le cuivre colore les minéraux en vert (malachite, dioptase) ou en bleu (azurite), le manganèse en rose (rhodochrosite), le vanadium en jaune (vanadinite). La présence de Fe3+ provoque une coloration jaune à rouge, alors que Fe2+ colore les minéraux en bleu-vert. La présence simultanée de Fe2+ et Fe3+ colore les minéraux en bleu foncé à noir.

Couleur due à un élément chromatophore constitutif du minéral						
Elément	Elément Couleur minéral formule chimique					
Cuivre	vert bleu bleu-vert	malachite azurite turquoise	$Cu_2 CO_3 (OH)_2$ $Cu_3 (CO_3)_2 (OH)_2$ $CuAl_6 (PO_4)_4 (OH)_8.5H_2O$			
Lithium	rose	rubellite	Na(Li,Al) ₃ Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₄			
Manganèse	rose rose orange	rhodonite rhodochrosite spessartine	Mn SiO3 Mn CO3 Mn3Al ₂ Si ₃ O ₁₂			
Chrome	vert	ouvarovite	Ca ₃ Cr ₂ Si ₃ O ₁₂			

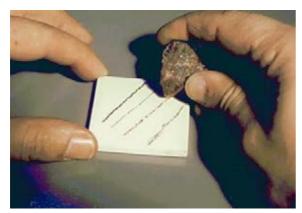
Les minéraux allochromatiques doivent leur coloration soit à la présence d'impuretés (éléments chromatophores) en traces infimes, soit à une déformation de leur structure sous l'effet de radiations. Comme exemple citons le corindon qui est normalement incolore. La présence de traces d'oxyde de chrome le colore en rouge (rubis) alors que des traces d'oxyde de fer et de titane lui confèrent une coloration bleue (saphir).

Couleur due à une impureté en très faible quantité					
minéral comp. chim. variété couleur Impureté					
corindon	Al ₂ O ₃	rubis saphir bleu saphir vert	rouge bleu vert	Cr Ti + Fe Fe"	
spinelle	MgAl ₂ O ₄	spinelle rouge spinelle bleu	rouge bleu	Cr Fe"	
béryl	Be ₃ Al ₂ Si ₆ O ₁₈	émeraude aigue-marine	vert bleu pâle	Cr Fe"	

Pour des causes identiques le béryl peut être parfaitement incolore (goshénite), vert (émeraude), bleu (aigue-marine), ou rose (morganite). La coloration peut être due aussi à la présence d'inclusions solides microscopiques : quartz vert, coloré par des inclusions de chlorite.

D'autres minéraux, le quartz, la fluorine ou le zircon par exemple, montrent des teintes très variées qui disparaissent lorsqu'on les chauffe. Il ne s'agit pas de colorations dues à des impuretés mais plutôt à des dérangements dans leur structure, qui ont été provoqués par la radioactivité naturelle. Le quartz fumé devient incolore si on le chauffe. Il ne reprend plus sa couleur une fois refroidi. Par contre on peut "fumer" artificiellement un quartz incolore en l'exposant à une source de radiations ionisantes.

La couleur du trait



Le degré de division d'un minéral en petites particules joue un rôle important sur l'apparence de sa couleur, et si on le divise finement - en poudre par exemple - sa couleur s'éclaircit. L'hématite, qui paraît gris-noir, donne une couleur rouge brunâtre lorsqu'elle est réduite en poudre. Pour observer cette coloration il suffit de frotter le minéral sur une surface rugueuse dure. On utilise généralement une plaquette de porcelaine non vernissée sur laquelle le minéral laisse un trait coloré. La couleur du trait figure en bonne place dans les descriptions de minéraux.

L'indice de réfraction

L'indice de réfraction est un nombre sans unité qui exprime le rapport de la vitesse de la lumière dans l'air à celle mesurée à l'intérieur du minéral :

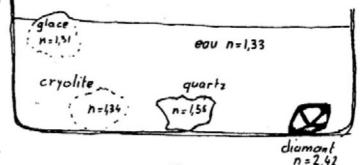
n = Vitesse de la lumière dans l'air
Vitesse de la lumière dans le minéral

Cette différence de vitesse est responsable de la déviation des rayons lumineux à la limite de séparation de deux milieux d'indices différents. Plus la différence des indices est grande, plus cette déviation est importante. C'est la déviation des rayons lumineux qui permet de distinguer un corps

transparent incolore plongé dans un autre milieu transparent.

Relief apparent de divers minéraux plongés dans l'eau

Le relief d'un minéral plongé dans l'eau est d'autant plus marqué que la différence des deux indices est grande. Sur le dessin



ci-dessus, on voit que la glace et la cryolite, qui ont un indice de réfraction assez proche de celui de l'eau, ne sont que peu perceptibles. Le quartz est déjà plus contrasté alors que le diamant, avec son haut indice de réfraction, est mis en évidence par un contraste élevé.

L'éclat permet de briller

L'éclat est une appréciation quelque peu subjective qui dépend directement du pouvoir réflecteur. Ce dernier est défini comme étant la proportion de lumière réfléchie par rapport à la quantité de lumière reçue.

Pour les minéraux transparents, le pouvoir réflecteur est toujours assez faible et ne dépend que de l'indice de réfraction. Les lois qui régissent le pouvoir réflecteur des minéraux opaques sont plus complexes. Ils peuvent présenter parfois des pouvoirs réflecteurs très élevés.

pouvoir réflecteur R = quantité de lumière réfléchie quantité de lumière reçue

La relation entre le pouvoir réflecteur et l'indice de réfraction vaut :

$$R = \frac{(n-1)^2}{(n+1)^2}$$

L'éclat gras ou vitreux caractérise les minéraux transparents à faible indice de réfraction (quartz, fluorine, tourmaline), l'éclat adamantin caractérise les minéraux transparents à haut indice de réfraction (cassitérite, rutile, diamant).

Quant aux minéraux opaque, leur éclat est plus ou moins métallique suivant l'importance de leur pouvoir réflecteur.

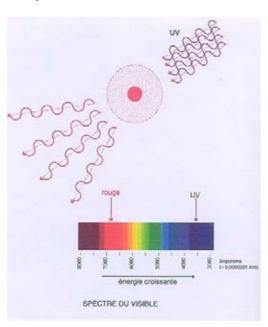
La nature de la surface du minéral ou la présence d'inclusions microscopiques peut modifier l'éclat, et il existe toute une série de qualificatifs qui caractérisent ces aspects : résineux, laiteux, terreux, soyeux, terne, etc...

Eclat des minéraux transparents			Eclat des minéraux opaques	
éclat	pouvoir réflecteur	indice de réfraction	éclat	pouvoir réflecteur
gras	4.8 %	1.3 à 1.5	submétallique	8 à 20 %
vitreux	6 %	1.5 à 1.8	métallique	20 à 50 %
subadamantin	12 %	1.8 à 2.2	supermétallique	> 50 %
adamantin	17.5 %	> 2.2		-!

Relation ente l'éclat et l'indice de réfraction

La nature de la surface du minéral ou la présence d'inclusions microscopiques peut modifier l'éclat, et il existe une série de qualificatifs qui caractérisent ces aspects : résineux, laiteux, terreux, soyeux, terne, etc...

La photoluminescence



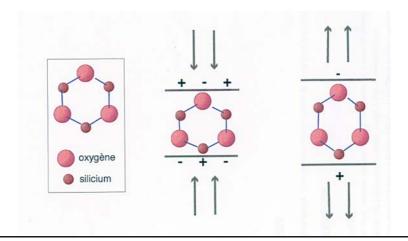
C'est l'émission de lumière que produit un minéral excité par un bombardement de photons énergétiques. La lumière émise possède toujours une longueur d'onde plus grande que celle qui provoque l'excitation. Ainsi si on irradie un minéral susceptible de photoluminescence avec la lumière prise dans le spectre visible, l'émission secondaire aura lieu dans l'infrarouge et ne sera pas perceptible à l'oeil. Il faut donc irradier les minéraux avec une lumière ultraviolette pour que l'émission secondaire se situe dans le spectre visible. Les minéraux sujets à ce phénomène sont dits luminescents. On utilise parfois le terme de fluorescence dont l'étymologie vient du minéral fluorine qui présente souvent ce phénomène. Parfois même, certains minéraux émettent de la lumière quelques instants encore après l'extinction de la source excitatrice : on parle alors de phosphorescence.

Il n'y a que très peu de minéraux qui sont toujours fluorescents : la scheelite (CaWO₄) et la willémite (ZnSiO₄). Par contre beaucoup d'autres minéraux sont occasionnellement luminescents (fluorine, apatite, calcite, aragonite, zircon..). Ce sont des impuretés, dites phosphogènes, qui sont responsables de cette luminescence occasionnelle, en particulier le manganèse (Mn) et le bismuth (Bi).

Les propriétés électriques

Les propriétés électriques dépendent du type de liaison qui unit les atomes. Les minéraux à liaisons métalliques sont conducteurs d'électricité. Les minéraux à liaisons ioniques ou covalentes sont isolants ou montrent des propriétés de semi-conducteurs.

Les minéraux non conducteurs auxquels il manque le centre de symétrie peuvent être électrisés par chauffage (pyroélectricité) ou par compression (piézoélectricité). Les exemples les plus connus sont la tourmaline qui, chauffée, devient porteuse de charges positives à l'une de ses extrémités, négatives à l'autre, et le quartz qui laisse apparaître des charges de signes opposés sur les deux faces d'une plaquette (taillée perpendiculairement à un axe de symétrie binaire) lorsqu'on la comprime. Ce dernier phénomène est très important et il a de nombreux usages en électronique (montre à quartz par exemple).



La montre à quartz

La faible symétrie et l'absence d'un centre d'inversion confère au quartz des propriétés piézoélectriques. En clair cela signifie qu'une plaquette de quartz soumise à une pression mécanique voit apparaître sur chacune de ses faces des charges électriques de signe opposé. Réciproquement, l'application à chacune de ces faces de charges électriques de signe opposé, déforme légèrement la plaquette.

Si on introduit une plaquette de quartz convenablement taillée entre les électrodes d'un circuit oscillant, le quartz se met à vibrer avec une fréquence propre qu'il va imposer au circuit. La fréquence dépend des dimensions de la plaquette et de son orientation cristallographique. On l'utilise donc comme étalon de fréquence dans de nombreuses applications de l'électronique. Dans les montres à quartz on utilise une plaquette de quartz vibrant 32'768 fois par seconde (= 2¹⁴ vibrations). Un circuit intégré dédouble 14 fois de suite le nombre de ces vibrations qui passe alors à une période par seconde, impulsion qui commande l'avance de l'aiguille des secondes.

Les propriétés magnétiques

Certains minéraux sont sensibles à des champs magnétiques. Il faut toutefois des champs magnétiques assez puissants pour en percevoir les effets. C'est le cas, en particulier des minéraux renfermant du fer. Pratiquement il n'y a guère que deux minéraux qui sont fortement attirés par un aimant : la magnétite (Fe₃O₄) et la pyrrhotine (Fe₅).

Les propriétés chimiques

Sans un appareillage d'analyse complexe il n'est pas possible d'avoir une idée précise de la composition chimique d'un minéral. Il n'y a guère que la solubilité de certains minéraux dans les acides qui peut apporter quelques indications sur la classe chimique à laquelle ils appartiennent. La solubilité n'est pas toujours facile à observer. Certains minéraux ne se dissolvent que très lentement ou seulement partiellement. Ce n'est que dans le cas de quelques carbonates, en particulier la calcite, que la solubilité dans l'acide est facilement observable car la réaction entraîne le dégagement de gaz carbonique qui s'échappe de la solution en faisant effervescence.

Quelques rares minéraux laissent un goût sur la langue : la halite (NaCl) ou sel de cuisine laisse un goût salé bien reconnaissable alors que la sylvine (KCl) donne une saveur très piquante.

Votre avis m'intéresse!

Si vous avez apprécié ce texte ou si vous avez des remarques qui me permettraient de l'améliorer, veuillez me le faire savoir ! Voici mes coordonnées :

Jacques Deferne 40A, route d'Hermance CH-1222 Vésenaz deferne.jacques33@gmail.com