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The subject of this article is not currently in the mainstream of popular mathemati- 
cal topics. Nevertheless, teachers of geometry or special classes for liberal arts 
students may very well want to add this topic to their courses, or use it for an 
extracurricular offering in a mathematics club. If so, their students will be closer to 
the frontiers of mathematical research than most. 

The material presented was motivated by George P6lya's article, "Guessing and 
Proving," in the January 1978 issue of TYCMJ. P6lya shows there how Euler 
probably proceeded in looking for a classification for polyhedra but found instead 
the remarkable relation, V + F = E + 2. If you present Euler's formula for polyhe- 
dra as outlined there, your students may gain some appreciation for the power of 
analogy, insight into how guessing and proving relate to scientific work in progress, 
and more comprehension of the significance of the results in this article. 

Because of the sequential aspects of this article, we will not discuss or redefine in 
detail all of the terms used in P6lya's article. We will begin with an example from 
that article and continue to use the general approach of "guessing and proving," 
but our attention will be focussed on Euler's original question: How can polyhedra 
be classified so that the result is in some way analogous to the simple classification of 
polygons according to the number of their sides? Here we make some progress and 
find another formula. The question is not entirely settled, but perhaps after 
studying this article you, or some of your students, may be able to contribute the 
next important link, or even complete the solution of this classical problem. 

How Do You Classify Combinatorially Distinct Polyhedra? 

Consider this guess: If you know the number of faces, F, vertices, V, and edges, E 
for any simply connected polyhedron (of genus 0), then the three numbers, F, V, E 
may serve to classify such polyhedra. 
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V = 8 

E= 12 V-8 

F=6 

(a)(b 
Figure 1. 

Now look at Figure 1 in which all members of both sets of polyhedra have the 
same values for F, V and E respectively. We would be willing to let any of the 
polyhedra in Figure 1(a) belong to the same class, and likewise for the collection of 
polyhedra in Figure 1(b). But the combinatorial properties of any one of the 
polyhedra in the first set are so essentially ("morphologically") different from any 
of the ones in the second that they cannot be put in the same class. So, we conclude 
that this guess is unreasonable. 

The featured polyhedra in Figure 1 were the final pair in a carefully selected 
sequence of polyhedra in P6lya's article, and I originally thought I could see how 
to distinguish between them in a way that had not been mentioned there. That 
idea had very limited success (as was predicted immediately by P6lya) so let us 
not resurrect it. I mention it only to comfort others who may have similar 
experiences in attacking this problem. 

Then Professor P6lya suggested the following: 

On a given convex polyhedron, let 

f, = the number of faces with s sides; 

v, = the number of s-edged vertices; 

and then denote the polyhedron by the infinite sequence: 

A3, f4, A5, ... * ; V3, V4, V5, ... . 

in which, however, there are only a finite number of non-zero terms. 

163 

This content downloaded from 220.156.174.75 on Sun, 19 Jan 2014 20:05:14 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


According to this scheme the cube would be denoted "O, 6; 8" and the "cheese" 
would be "2,2,2; 8." This was encouraging. It appeared that knowing the number 
and nature of all the faces, and the number and nature of all the vertices might be 
sufficient for the desired classification. (Let your students look for counterexamples 
before going on.) 

But alas! This didn't always work either. P6lya found the counterexample 
represented by the pair of polyhedra in Figure 2.1 Intuitively, one senses that these 
two polyhedra are combinatorially distinct. Each triangle in 2(a) is intimately 
connected with some other triangle, while the triangles in 2(b) seem, by compari- 
son, to be mere acquaintances of each other (in 2(a) each triangle, and in 2(b) no 
triangle, has a common side with another triangular face). Yet, each is composed of 
4 triangular faces, 4 quadrilateral faces, and each has 4 three-edged and 4 
four-edged vertices. Indeed, using the proposed scheme, the name of each would be 
"4,4; 4,4." 

A B A B B 

F 

'E F, 

D C D C 
(a) (b) 

Figure 2. 

What a pity! Then again, perhaps we can learn from this counterexample and 
devise another scheme which may work. What we need is to formulate some way in 
which the two polyhedra in Figure 2 are different from each other. 

With this objective in mind, suppose we place a nearsighted flea on a triangular 
face of the polyhedron in Figure 2(a) and a nearsighted fly on a triangular face of 
the polyhedron in Figure 2(b). Then instruct them to walk around the boundary of 
the face on which they were placed and count the faces that adjoin (have a 
common edge or vertex with) that face. Both of these nearsighted insects will count 
5 adjoining faces. But suppose we find a flea and a fly who are both farsighted and 
place them, as before, on triangular faces of the polyhedra in Figure 2(a) and 2(b) 
respectively. This time instruct each of them to walk near the boundary of the face 
on which they were placed and count the non-adjoining sides of the faces that 
adjoin the face on which they walk. The flea on face HBC will now count 6 
"surrounding sides" (AE, EF, FE, ED, DG, GA) and the fly on face HBC will count 
5 "surrounding sides" (AF, FE, ED, DG, GA). This is the clue we were looking for. 
It gives us a means by which we can attach a number to each face of the 

' Subsequently, Professor P6lya observed that there are many counterexamples and you could find them 
listed conveniently in the article by P. J. Federico referred to below. There are no counterexamples with 
six faces or fewer. 
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polyhedron. In Figure 2(a) the four triangular faces would all be labeled 6 and the 
four quadrilateral faces would all be labeled 4. But, in Figure 2(b) all faces would 
be labeled 5. 

Voilh! We can now see a general plan emerging. It involves taking a look at 
various surrounding properties of parts of the geometric configurations we seek to 
classify. In the case of convex polygons in the plane, a blind insect walking around 
the boundary, feeling the number of sides, would be sufficient. In the case of 
polyhedra with six faces or less a very nearsighted insect could describe the 
polyhedron satisfactorily for us, in terms of the number and nature of its faces and 
vertices. Intuition suggests that in dealing with polyhedra having more faces, you 
must look farther away from the various parts in order to insure enough intercon- 
nectedness in the data to obtain classification. Because this seems so promising, we 
will formalize it. 

First, however, notice that farsighted insects don't perceive the non-adjoining 
boundaries of the adjoining faces as edges of a polyhedron because they can't see 
around corners. Thus we take the viewpoint that if a line segment joining two 
vertices is considered in relation to a face, to whose boundary it belongs, it is called 
a side of that face. If it is considered in relation to the whole polyhedron, as the 
common boundary of two neighboring faces, it is called an edge of that poly- 
hedron. We could, of course, take a similar view with regard to corners (on faces) 
and vertices (on polyhedra), but we do not plan to count either of these entities, so 
it would be a pointless distinction. We will, however, make the following: 

DEFINITIONS 

1. A Convex Polyhedron is (from the standpoint of combinatorial topology) equivalent to a 
sphere. 

2. The Constituent Parts of a convex polyhedron are of three kinds: 

vertices, edges, faces, 
conceived of as closed sets of points. 

3. Two different constituent parts (of the same kind or not) are called adjoining if they have 
at least one common point. (They may have an infinity of common points.) 

4. "A adjoins B" 
"B adjoins A" J all mean the same thing and 
"A and B are adjoining" 
in particular: 
"Face adjoining face" means "one common vertex or 

side (meeting on an edge 
of the polyhedron)"; 

"face adjoining vertex" means "a vertex of the polyhed- 
ron is also a vertex of 
the face"; 

"edge adjoining edge" means "the two edges have ONE 
endpoint in common"; 

"edge adjoining vertex" means "the vertex is an end- 
point of the edge." 

Moreover, a vertex NEVER adjoins another vertex. 
5. Each constituent part is classified according to its number of surrounding sides; that is, 

the number of non-adjoining sides on the adjoining faces to that part. 
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A B~~~~~~A 

(a) (b) 

(c) (d) 
Figure 3. 

Notice that the definitions give us a chance to look not only at the surrounded- 
ness of the faces, but the surroundedness of the vertices and edges as well. Thus, 
for example, a nearsighted insect placed on quadrilateral ABCD in Figure 3(b) 
(showing a portion of some polyhedron) would count 10 surrounding sides for that 
face. If placed on the edge AD he would count 10 surrounding sides, and if he were 
placed on vertex D he would count 7 surrounding sides. The question is: Will we 
need all of this information? Perhaps the memory of our previous limited successes 
is affecting our judgment-but if it turns out that we now get more information 
than needed, we can delete it later. So let us give it ANOTHER TRY. 

On a given polyhedron, let each of its constituent parts be classified 
according to its number of surrounding sides, s (obtained by counting the 
non-adjoining sides of the adjoining faces to that constituent part). 

Let Vs = the number of vertices with s surrounding sides, 
Es = the number of edges with s surrounding sides, 
Fs = the number of faces with s surrounding sides; 

and then denote the polyhedron which generated these numbers by the 
infinite sequence: 

V3V4 V55 ... .; E2E3E 45 . . *;FOFIF2' . . .*, 

in which, however, there are only a finite number of non-zero terms. 
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Note that there are no commas between successive entries of the same kind in 
the sequence. Entries with more than one digit will be written in parentheses. 

At this point it is worthwhile to have your students compute this sequence of 
classifying numbers for some familiar polyhedra. As an example, let us consider the 
cube. In Figure 4(a) we see that the quadrilateral face ABCD has four surrounding 
sides (EF, FG, GH, HE). By symmetry every other face must also have four 
surrounding sides. Likewise, since edge BC has six surrounding sides (AD, 
DH, HG, GF, FE, EA) all edges will have six surrounding sides. Finally, since 
vertex F has six surrounding sides (AE, EH, HG, GC, CB, BA) all vertices will have 
six surrounding sides. Thus the sequence of numbers "0008; 0000(12); 00006" will 
denote the cube (and the other polyhedra shown in Figure l(a)). 

D(X) 6 C(?) 

6 4 6 
D C 4 6 

H?G 
A 

(a) B6 =6 6 6 6 i4- 4- 44 

6 F? 
H ~ ~~ G66 

A?~ 6 B?~ 
E F 0 0 08;OOOO0 0(12); 00 0 06 

(a) V6 = 8 E6= =12 F4 = 6 
V =8 E= 12 F =6 

(b) 

Figure 4. 

Table I 

(for Figure 4). 

Constituent Part Surrounding Sides Classifying Number 

Quadrilateral A BCD EF, FG, GE, HE 4 
Quadrilateral A BFE DC, CG, GH, HD 4 
Quadrilateral EFGH AB, BC, CD, DA 4 
Edge AB DH, HE, EF, FG, GC, CD 6 
Edge BF AE, EH, HG, GC, CD, DA 6 
EdgeEF AD,DH,HG,GC,CB,BA 6 
Vertex A DH, HE, EF, FB, BC, CD 6 
Vertex E DH, HG, GF, FB, BA, AD 6 
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It is difficult to show all of the classifying numbers on the constituent parts of 
the illustration in Figure 4(a), so we use instead the Schlegel diagram of the cube 
shown in Figure 4(b). To see the relationship between the two figures, imagine the 
face ABCD to be transparent. Then view the cube at extremely close range through 
the face ABCD. The edges will then be perceived as shown in Figure 4(b). As can 
be seen on the resulting figure it is now easy to show all of the classifying numbers. 
One must be careful to remember that the boundary represents a face, and each of 
the separate regions within that boundary also represents a face. Once the classify- 
ing numbers are assigned to the constituent parts it is then possible to read the 
classifying sequence from the diagram. If you use different colors for the face, edge 
and vertex numbers, reading the sequence is even easier. Since colors are not 
possible here, the circled numbers represent the surrounding sides for vertices, and 
the underlined numbers represent the surrounding sides for the nearest edge. The 
remaining numbers represent the surrounding sides for the face corresponding to 
the region in which they appear, except for the number outside of the bounding 
polygon (on the left), which represents the surrounding sides for the bounding 
polygon. 

With practice you can compute the classifying numbers for all the constituent 
parts of a polyhedron using only the Schlegel diagram. But it helps to begin with a 
familiar configuration. Notice that on the Schlegel diagram for the cube, the faces 
and edges appear in three different ways and the vertices appear in two different 
ways. It may be helpful to identify on the Schlegel diagram the surrounding sides 
for each of the cases listed on Table I. 

D(O 5 C( 
3 

5s 5 

E 2 F? - 

D I ~~ ~~~~ ~~4 2 4 2 4 
C 

F ~ ~ ~ ~ F 

0 06; 0 03 6; 0 03 2 

A V5= 6 E4= 3, E5=6 F2=3, F3= 2 
B V =6 E= 3 +6 =9 F=3 +2= 5 

(a) (b) 
Figure 5. 

Figure 5 represents a particularly instructive example. You may wish to draw the 
Schlegel diagram first and try to attach the various classifying numbers yourself. 
Table II may be useful. 
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Table II 

(for Figure 5). 

Constituent Part Surrounding Sides Classifying Number 

Triangle ABF DE, EC, CD 3 
Quadrilateral ABCD EF, FE 2 
Quadrilateral FBCE DA, AD 2 
Edge AB DE, EF, FE, EC, CD 5 
Edge AF DE, EC, CB, BC, CD 5 
Edge EF AB, BC, CD, DA 4 
Edge DA CE, EF, FB, BC 4 
Vertex A DE, EF, FB, BC, CD 5 
Vertex F DE, EC, CB, BA, AD 5 

We return now to the polyhedra in Figure 2. The appropriate Schlegel diagrams 
(each viewed through face AGHB) are shown in Figure 6 with the classifying 
sequence and certain data obtainable from that sequence. 

A 6 B A?() 7 B 

6 4 6 
6 

4 ~ET FC5 F? 
644 6 

5 5 
8 8 =82 E7 j~ = 

6 6 46 6 6 6 6 6 

6 6 6 6 5 

004s= 4;02(1)2;0000=404ss 0 2 ~ 00 4; 204;00000 =84 =0 

(a)) (b) 
6~~~~~~~~Fgr 6. 

TalII(for 4h polyedr rersne in Fiur 7)vrfHhtw edtheetr 

V5 =4 E4 =2 F4 =4 V5 =4 E4 =2 F5=8 

V6 =4 E6 = 10 F6 =4 V6 =4 E6= 8 
E8 = 2 E7 = 4 

V =8 E= 14 F =8 V =8 E= 14 F 8 
6 8 6 6 7 5 

Z sV = 44 Z sE = 84 Z sFs=40 Z sV = 44 Z sE = 84 Z sFs=40 
s=3 s=2 s=O s=3 s=2 s=O 

(a) (b) 
Figure 6. 

.The classifying sequences in Figure 6 suggest that we might need only the 
portion of the sequence involving the edges, or the faces. But the data shown on 
Table III (for the polyhedra represented in Figure 7) verify that we need the entire 
sequence of numbers to classify those polyhedra. In view of Table III it is quite 
remarkable that this sequence does indeed classify all combinatorially distinct 
polyhedra with eight faces or fewer.2 
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(8) 8 8@ (2) 8 t 

10 10 

8 10 8 8 8 8 
108 8 8 

(a) (b) 

8 10 ~~~8- 

6 7~~~~ 

7 7 8 6igre 8 

2 All of the 301 polyhedra with 8 faces or fewer are listed and illustrated by Schlegel diagrams in 

Federico's paper which was referred to in order to verify that this scheme does classify those polyhedra. 
The portion of the sequence involving edges, "E2E3E4, . ..," will classify those polyhedra with 7 faces 
or less, but the entire expression is needed when you consider polyhedra with more than 7 faces. 
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Table III. 

Fig. Federico's Classification Sequence 
No. Fig. No. V3 V4 V5 V6 V7 V8 V9; E2 E3 E4 E5 E6 

7(a) 54 0 0 0 0 0 (12) 0; 0 0 0 0 0 
7(b) 57 0 0 0 0 6 0 6; 0 0 0 0 0 
7(c) 159 0 0 0 4 4 2 0; 0 0 0 0 4 
7(d) 162 0 0 0 4 4 2 0; 0 0 0 0 4 
7(e) 234 0 0 1 5 3 0 0; 0 0 0 0 7 
7(f) 235 0 0 1 5 3 0 0; 0 0 0 2 3 

Classification Sequence (continued) 
E7 E8 E9 E10; Fo F1 F2 F3 F4 F5 F6 F7 F8 

0 (12) 0 6; 0 0 0 0 0 0 2 0 6 
0 (12) 0 6; 0 0 0 0 0 0 2 0 6 
4 4 4 0; 0 0 0 0 0 0 4 4 0 
4 4 4 0; 0 0 0 0 0 2 1 4 1 
5 2 1 0; 0 0 0 0 1 2 3 2 0 
7 2 1 0; 0 0 0 0 1 2 3 2 0 

Table IV. 

Sum of Sum of Sum of 
vertex edge face 

Fig. numbers numbers numbers 
No. V = E VI E = ZE, F= Fs =sVs EsEs =EsFs 

7(a) 12 18 8 96 156 60 
7(b) 12 18 8 96 156 60 
7(c) 10 16 8 68 120 52 
7(d) 10 16 8 68 120 52 
7(e) 9 15 8 56 102 46 
7(f) 9 15 8 56 102 46 

For polyhedra with more than 8 faces the question is still not resolved (no 
counterexamples have been found). Thus, there remain 

Some Questions 

Will this sequence classify all combinatorially distinct polyhedra? If so, how is it 
proved? If not, what is a counterexample? 
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A Surprising Bonus 

There is little doubt that the proposed classification scheme is somewhat tedious, 
and a simpler one would certainly be preferred.3 Meanwhile, some sort of check on 
the accuracy of the labels obtained here is certainly desired. Of course, you might 
check to make certain 

00 00 00 

F+ V = E + 2, where F= A 1, V= A V, and E = E . 
S=? s=3 s=2 

But this is not a very strong test, for it simply assures that it is unlikely you have 
forgotten to assign a number to one, or more, of the constituent parts. What we 
really want is a test that will give you some reasonable assurance that you haven't 
miscounted the surrounding sides for some constituent part. 

What can we use? Perhaps, if we are lucky, something like Euler's formula might 
work. Let's look at the various classifying numbers on the cube. Each of its six 
faces is labeled 4; each of its eight vertices is labeled 6, and each of its twelve edges 
is labeled 6 (in more abbreviated form: F4 = 6, V6 = 8, E6 = 12). 

Of course we know that (6)(4) + (8)(6) = (12)(6). 
Do you suppose that 

sum of all sum of all 1 sum of all 
classifying plus classifying equals classifying ? 
FACE numbers VERTEX numbers EDGE numbers 

To put it more formally, do you suppose that 
00 00 00 

E sFs + E sVs= E sEs, 
s=O s=3 s=2 

is true for all convex polyhedra? (Let your students examine more cases, see Table 
IV, before giving away this final result.) 

Happily, the answer is YES. To see why this should be so, focus your attention 
on one side of some n-gon on a polyhedron and see how many times that particular 
side gets counted by faces, by vertices and by edges. In Figure 8 let k represent the 
number of times the indicated side gets counted by faces adjoining the n-gon. Then 
k + 1 is the number of times that side gets counted by the edges radiating from the 
vertices of the n-gon which are not on the boundary of the n-gon. But, the side 
under consideration also gets counted n - 3 times by edges on the boundary of the 
n-gon. Finally, this side gets counted n - 2 times by vertices on the n-gon. Thus, we 
see that this particular side gets counted 

k times by faces, 

n - 2 times by vertices, 

3 When I presented this material at California State College, Sonoma, a student, Rick DeFreez, 
suggested the following addition to Professor P6lya's scheme: Add to f3, f4, f5. v3, V4, V5, . . , as a 
complement, the sequence 3e3, 3e4, 3e5, . . , where jej is the number of edges adjoining an i-sided face 
and a j-sided face. Mr. DeFreez's idea does, in fact, distinguish between Figures 2(a) and 2(b) but, 
again, it has limited success in general (see, for example, Figures 282 and 288 in Federico's paper). 
Nevertheless, it was a good try; perhaps something similar may be found that will have fewer limits to 
its success. 
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Look at this side 

n-gon 

2 - 

Figure 8. 

and 
(k + 1) + (n - 3) times by edges. 

But certainly, k + (n - 2) = (k + 1) + (n - 3), and since a similar relationship 
holds for each of the 2E sides on the polyhedron, it follows that this new Euler-like 
relationship must hold. 

This formula, along with Euler's formula, provides a reasonable check for the 
accuracy of a classifying sequence. 

I express my sincere thanks to Professor P6lya for his continued interest in discussing the problem; 
for encouraging me to write this article; for reading the preliminary version and especially for his 
valuable suggestions with regards to the definitions. 

I also thank Dave Logothetti for his encouragement and for his creative illustrations. 
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