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 Every amateur carpenter who has tried to build a bookcase knows that rectangles 
are not rigid.   If you lean against the corner of a rectangle then it tilts sideways to form a 
parallelogram (Fig.1a) --- and in all likelihood collapses completely.   A triangle, on the 
other hand, is rigid: it cannot be deformed without changing the length of at least one 
side.  Euclid knew this, in the form 'if two triangles have sides with the same lengths, then 
the triangles are congruent (have the same shape)'.  In fact, the triangle is the only rigid 
polygon in the plane.    Any other polygonal shape must be braced in some manner.   For 
example, cross-struts can be added, to break it into triangles (Fig.1b), or shapes that are 
themselves rigid can be assembled in threes (Fig.1c).  

(a)

(b)

(c)
 

(a) Flexing a rectangle changes its area.   (b)  Cross-struts can make a polygon rigid.   (c) Some rigid shapes need not be 

made from triangles. 

 
 Another way to rigidify your bookcase is to nail a flat back onto it.   This takes the 
question into the third dimension, where everything becomes far more interesting, and 
surprises abound.   For nearly 200 years mathematicians have been puzzled by the 
rigidity, or otherwise, of polyhedrons --- solids with finitely many straight line edges, 
whose faces are polygons that meet in pairs along edges.   Until recently it was assumed 
that any polyhedron with triangular faces must be rigid --- but that turned out not to be 
true.   There exist 'flexible' polyhedrons, which change shape even though no face distorts 
or bends by even the tiniest amount --- I'll come back to those in a moment. 
 The latest discovery, made by Robert Connelly (Cornell), Idzhad Sabitov 
(Moscow State U) and Anke Walz (Cornell), is that flexible polyhedrons cannot change 
their volume.  It is not possible to make a polyhedral 'bellows' that can flex and blow air 

 
 
 



out through a hole as its internal volume shrinks.  (What about concertinas?   See below.)  
Their proof required them to discover some unexpected properties of polyhedrons, which 
are likely to prove important in future research. 
 Before starting on the math, I'd better make one thing clear.   Anyone who has 
folded origami figures from paper knows that it is possible to make birds that flap their 
wings, frogs whose legs move, and so on.   Aren't these flexible polyhedrons?   The 
answer is 'no', for two reasons.   One reason is that the paper has edges, so it does not 
form a polyhedron.   The other, more important, reason is that when the paper frog moves 
its legs, the paper bends slightly.   The same goes for concertinas, which at first sight 
appear to be polyhedral bellows, but again these work only because of slight bending (and 
perhaps even a little stretching).  From now on, no amount of bending, not even by a 
billionth of an inch, will be permitted.   When a polyhedron flexes, the only things that 
can change are the angles at which faces meet.    Imagine that the faces are hinged along 
their edges, and flex the hinges.  All else is perfectly rigid. 
 The whole area dates back to 1813, when the great French mathematician 
Augustin Louis Cauchy proved that a convex polyhedron --- one without indentations --- 
cannot flex.  But what if there are indentations?   The first flexible non-convex 
polyhedron was found by Raoul Bricard, a French engineer --- except that in his example 
faces were permitted to interpenetrate freely, and move through each other.   This is of 
course impossible for a real physical object.   However, Bricard's example can be realised 
if we remove the faces and replace the edges by rigid rods to get a linkage.   Bricard also 
invented chains of simple polyhedrons, joined edge to edge, that can flex.  According to 
W.W. Rouse Ball's famous book Mathematical Recreations and Essays, the simplest such 
rings were invented by J. M. Andreas and R.M.Stalker [EDITOR: NO FURTHER 
INFORMATION GIVEN OR KNOWN FOR BALL, ANDREAS, STALKER.  DATE 
NOT KNOWN.  BALL IS MODERATELY FAMOUS, THE OTHER TWO 
OBSCURE.].  These are rings of six or more regular tetrahedrons --- the number must 
always be even --- hinged together along pairs of opposite edges (Fig.2).    
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A ring of ten tetrahedrons.    Fold solid lines into ridges, dotted ones into valleys.    Join tabs with the same letter. 

 
With six tetrahedrons the amount of movement is slight, but with eight or more, the ring 
can rotate indefinitely, like a smoke ring.   With 22 or more, the ring can even be knotted!   
However, such shapes are not true polyhedrons because more than two faces meet along 
some edges. 
 The topic did not really come alive until the 1970s, when Connelly modified 
Bricard's self-penetrating flexible polyhedron in such a manner that it remained flexible, 
but ceased to be self-penetrating.  Within a few years the construction had been simplified 



by Klaus Steffen (U Düsseldorf), to yield a flexible polyhedron with nine vertices and 
fourteen triangular faces (Fig.3).    
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Steffen's flexible polyhedron.   Fold solid lines into ridges, dotted ones into valleys. 

 
It is amusing to make a model out of thin card, and see how it flexes.    As far as anyone 
knows, this is the simplest possible flexible polyhedron, but it is very difficult to see how 
to go about proving such a statement. 
 Mathematicians who investigated these and other flexible polyhedrons quickly 
noticed that as they flexed, some parts moved closer together while others moved further 
apart.   Qualitatively, at least, it looked as if the total volume might not change during the 
motion.   Dennis Sullivan (City U of New York) filled a flexible polyhedron with smoke, 
flexed it, and observed that no smoke puffed out.   This elegant but crude experiment 
suggested --- but of course did not prove --- that the volume remained unchanged.   And 
so the Bellows Conjecture was born.  It states that a flexible polyhedron has constant 
volume while it flexes --- a polyhedral bellows is impossible. 
 The first interesting feature of the Bellows Conjecture is that its planar analog is 
false.   When a flexible polygon, such as a rectangle, collapses into a parallelogram, the 
area gets smaller.    Clearly there is something unusual about three-dimensional space that 
makes a bellows impossible.   But what?   Connelly's group focussed on a famous 
formula for the area of a triangle, believed to be due to Archimedes, but usually credited 
to Heron of Alexandria who wrote down a proof.  Heron was a Greek mathematician who 
lived somewhere between 100 BC and AD 100, and he stated and proved the formula in 
his books Dioptra and Metrica.   The formula is shown in the box, but what matters here 
is not so much the details, as the general nature of the formula.   It can be rearranged, 
using algebra, to give an equation relating the area of the triangle to its three sides.   
Moreover, this equation is polynomial: its terms are just whole number powers of the 
variables, multiplied by fixed numbers. 



 
 
 

 
===== 
BOX Heron's Formula 
 Suppose that a triangle has sides a, b, c, and area x.   Let s be the semi-perimeter:  
  s = (a+b+c)/2.   
Then 
  x = ⎟(s(s-a)(s-b)(s-c). 
Square this equation and rearrange to get rid of the 1/2's: the result is 
  16x2 + a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2b2c2 = 0. 
This is a polynomial equation relating the area x to the three sides a, b, c. 
=====END BOX 
 
 Sabitov came up with the curious --- and at first implausible --- idea that there 
might be a similar polynomial equation for any polyhedron, relating the polyhedron's 
volume to the lengths of its sides.   Such a polynomial would be a truly remarkable 
discovery, because until that moment nobody had suspected that any such thing could 
possibly exist.  Yes, there were some well known special formulas --- easy ones for for 
cubes and rectangular boxes, and something a bit like Heron's formula for tetrahedrons 
(solids with four triangular faces, regular or irriegular pyramids on a triangular base) only 
more messy.  But nothing completely general, applying to any polyhedron.    
 Could the great mathematicians of the past really have missed such a wonderful 
idea?   It seems unlikely. 
 Nevertheless, suppose such a formula does exist.   Then the Bellows Conjecture is 
a simple consequence.   The reason is straightforward.   The formula relates the volume to 
the sides.   As the polyhedron flexes, the lengths of its sides don't change --- so the 
formula stays exactly the same.   Its solution, the volume, must therefore also stay the 
same. 
 Actually, there is one technical point to take care of.    A polynomial equation can 
have several distinct solutions, so in principle the volume might suddenly jump from one 
solution to a different one.   However, the volume obviously changes gradually if the 
flexing is gradual, so whatever the volume does, it cannot jump.   End of proof. 
 All that remained was to prove the existence of a polynomial equation for the 
volume of a polyhedron in terms of its sides.   There is an obvious place to start: the 
classical formula for the volume of a tetrahedron.   Just as any polygon can be divided 
into triangles, so can any polyhedron be divided into tetrahedrons.   Then the volume of 
the polyhedron is just the sum of the volumes of those tetrahedral pieces.   But that won't, 
of itself, solve the problem.   The formula that it leads to involves all the edges of all the 
pieces, and many of those are not edges of the original polyhedron.   Instead, they are 
various 'diagonal' lines that cut across from one corner of the polyhedron to another one, 
whose lengths may very well change if the polyhedron flexes.    So somehow the formula 
has to be massaged, algebraically, to get rid of unwanted edges and 'glue' all the 
component equations together into one Grand Unified Equation. 



 
 
 

 It was always going to be messy.   For an octahedron, with eight triangular faces, 
it turned out that such a massaging procedure was possible, but the resulting equation 
involved the 16th power of the volume.   More complex polyhedrons would surely 
require higher powers still.   However, the octahedron was a good start.   By 1996, 
Sabitov could write down an explicit but extremely complicated procedure for finding 
suitable equations. In 1997, however, the team of Connelly, Sabitov, and Walz found a 
far simpler way to achieve the same result. 
 The reasons why such equations exist are not fully understood.  In two 
dimensions, they don't --- except for the rigid triangle and the Heron equation.   In three 
dimesions, we now know that they do.   Connelly and Walz think they know how to 
prove a four-dimensional Bellows Conjecture.   For five dimensions or more, the problem 
is wide open. But it's fascinating to see how a simple experiment with some bits of card 
and some smoke opened up a marvellous, totally unexpected, and fundamental 
mathematical discovery. 
 
 
  

 


