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ABSTRACT
M.C. Escher created a myriad of amazing planar tessella-
tions, yet only a few three-dimensional ones such as his
wooden fish ball and dodecahedral flower. We have de-
veloped an interactive program to design and manufacture
“Escher Spheres” - sets of tiles that can be assembled into
spherical balls. The user chooses from a set of predefined
symmetry groups and then deforms the boundaries of the
basic domain tile; all corresponding points based on the
chosen symmetry class move concurrently, instantly showing
the overall result. The interior of the tile can be embellished
with a bas-relief. Finally the tile is radially extruded and
output as a solid model suitable for free-form fabrication.
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1. INTRODUCTION
M.C. Escher is arguably the most famous graphic artist of
the 20th century, celebrated for his artistic vision of mathe-
matics [5]. In particular Escher created a spectacular array
of drawings, tiling the plane with such creatures as lizards,
birds, and fish. Escher himself found this subject the most
interesting of all his work [3] and used his two-dimensional
drawings as the basis for his hobby of carving beechwood
spheres [12]. Such sculptures include a sphere of intertwined
fish and a dodecahedral flower (Fig. 1). In contrast to the
137 regular divisions of the plane that he created, Escher
only made a handful of spherically symmetric sculptures.
There are several reasons for this disparity.

Figure 1: Sculptures carved by M.C. Escher.
c©2000 Cordon Art B.V.-Baarn-Holland. All rights reserved.

Trained as a print maker, Escher could make a sketch, turn
it into an etching, and easily make reproductions. However,
creating spherically symmetric sculptures is much more com-
plex. First, it is difficult to understand how spherical sym-
metries work to form a whole object - how the pieces join
together. Second, it is much harder to visualize a spherical
design than a planar tiling. Escher could not simply make
sketches but had to use special devices and models made of
wood and thick paper [3]. Finally, not only was the carving
of an original a lengthy process, but making reproductions
was difficult and expensive.

During the last decade, many Solid Free-form Fabrication
(SFF) processes have emerged making it easy - although
not inexpensive - to build shapes of almost arbitrary com-
plex geometry. This leaves the design of such objects as
the dominant bottleneck. We have thus set out to develop
an interactive system to easily design and manufacture “Es-
cher Spheres” - spherical balls composed of identical tiles.
Our system offers interactive editing capabilities for modi-
fying the shape of the tile, embellishing it with a bas-relief,
and extruding it into a manufacturable physical part. The
key challenge was how to hide the complexities of spherical
tilings and to make the design process manageable for as
large an audience as possible.

2. SPHERICAL TESSELLATIONS
A tessellation is a regular tiling, or repeating pattern, that
fills a surface without gaps or overlaps. Any tile can be
transformed by a symmetry operation to another tile of the
tessellation. The set of all such operations of a tessellation
forms a symmetry group. To understand how a tessellation
is created, we first review planar tilings.



2.1 Planar Tiling
To create an artistic planar tiling, we start with a basic
shape that tiles the plane - equilateral triangle, square, hexa-
gon, etc. This tile can now be modified into an interesting
figurative shape. The underlying symmetry of the chosen
tessellation must be maintained, so that the modified tiles
will still fit together seamlessly and cover the entire plane.
For example, when a “bulge” is made on one side of the
basic shape, a corresponding bulge may have to be taken
away from the opposite side [13][9][1]. Editing systems for
such planar tilings are available commercially as well as on
the web [15][10]. Interesting work has also been done in the
“Escherization” of images [11].

2.2 Spherical Tiling
As with planar tiling, in spherical tiling we start with a basic
shape and then modify it to create an interesting tessella-
tion. Now, however, this basic shape must tile the sphere.
Of the many possible spherical tiling schemes [8], in this pa-
per we concentrate on the ones with the highest degree of
truly three-dimensional symmetries, the ones derived from
the most regular polyhedra - the five Platonic solids.

To create an artistic tessellation based on a particular Pla-
tonic solid, we take the face shape of that solid, a triangle,
square, or pentagon, and modify its contour as we did in the
plane. Now, however, the tiles are projected onto the sphere,
and the overall symmetry of the object must be preserved,
i.e. the tiles must have polyhedral symmetry.

2.3 Polyhedral Symmetries
The regular polyhedral group is a point group. A point group
is comprised of a set of points in space corresponding to the
polyhedron; the elements of the group are a set of symmetry
operations from the following transformations: the identity
element (E), n-fold rotations (Cn), inversion1 (i), improper
rotations2 (Sn), and reflections or mirrors (σ). These sym-
metry operators leave the overall shape of the polyhedron
the same, but can permute the points [2].

Because of the duality relationships among the Platonic
solids, there are three polyhedral groups - tetrahedral, oc-
tahedral/cuboidal, and icosahedral/dodecahedral [4]. In each
of these three groups, we can suppress the mirror symmetries
and thus have an “oriented” version in addition to the basic
non-oriented, or straight, group. To describe our approach,
we will use the simplest example, that of the tetrahedron;
the techniques described apply to all the polyhedral symme-
try groups.

2.4 Tetrahedral Symmetry
The tetrahedral group, or straight tetrahedron group, is the
set of points of a tetrahedron with 24 symmetry operators.
The first symmetry operator in this group is the identity
operation (E) that leaves the tetrahedron un-transformed.
There are four 3-fold rotational axes (C3), one through each
tetrahedron vertex and its opposing face centroid (Fig. 2a).
There are two possible rotations about these axes of ±120◦,

1Reflection through center of symmetry.
2Rotation of 360◦/n followed by reflection across the plane
perpendicular to the rotation axis.

and therefore a total of eight different C3 rotations. Like-
wise there are three 2-fold rotation axes (C2) through the
midpoints of opposite edges, each with one possible rotation
of 180◦ (Fig. 2b). These C2 axes are also used for improper
rotations (S4) of ±90◦. Finally, there are six mirror planes
(σd), one through each tetrahedron edge and the midpoint
of its opposing edge (Fig. 2c). This group of 24 symmetry
operators is denoted {E, 8C3, 3C2, 6S4, 6σd} [16].

(a) (b) (c)

Figure 2: The tetrahedron has (a) four 3-fold axes,
(b) three 2-fold axes and improper rotation axes,
and (c) six mirror planes.

To see how tetrahedral tiles form, we draw the letter “f”
on the triangle faces of the tetrahedron and study how the
symmetries cause it to repeat. The face of the tetrahedron
has four C3 points, three C2 points, and three mirror planes
(Fig. 3a), resulting in 6 regions per face for a total of 24
regions. We can think of these regions as tiles of a tessella-
tion. Taking a further look, we see that the mirror symme-
tries constrain the tile boundary to a fixed location; the tile
boundaries cannot be deformed without creating a tessella-
tion that has holes or overlap. So although the tile can be
decorated, as with the letter “f”, the resulting straight-tile
tessellation is not very compelling. However, if the mirror
symmetries are eliminated, much more interesting tessella-
tions can be obtained.

(a) (b)

Figure 3: The faces of a tetrahedron with (a) non-
oriented symmetry and (b) oriented symmetry.

The oriented tetrahedron group has only the rotational sym-
metries of the tetrahedral group: {E, 8C3, 3C2}. In this new
symmetry group, the letter “f” only repeats three times per
triangle face, for a total of 12 copies (Fig. 3b). Because
the triangular faces no longer contain mirror symmetry con-
straints, the tile boundaries can now be deformed to create
intricate interlocking tile shapes.

The straight and oriented tetrahedron are just two of the
seven groups derived from the Platonic solids (Table 1). In
addition to the straight and oriented octahedron/cube and
icosahedron/dodecahedron, there is also the double tetrahe-
dron group. This group is best described by two interpen-
etrating tetrahedra of opposite orientation. Of these seven
groups, the three oriented ones are best for making interest-
ing organic-looking tile shapes.



Table 1: Spherical Symmetry Groups Based on the Platonic Solids
Symmetry Group Order Symmetry Operators
Oriented Tetrahedron 12 {E, 8C3, 3C2}
Straight Tetrahedron 24 {E, 8C3, 3C2, 6S4, 6σd}
Double Tetrahedron 24 {E, 8C3, 3C2, i, 8S6, 3σ}
Oriented Octahedron/Cube 24 {E, 8C3, 6C2, 6C4, 3C2

4}
Straight Octahedron/Cube 48 {E, 8C3, 6C2, 6C4, 3C2

4, i, 8S6, 6S4, 6σh, 3σd}
Oriented Icosa/Dodeca-hedron 60 {E, 20C3, 15C2, 12C5, 12C2

5}
Straight Icosa/Dodeca-hedron 120 {E, 20C3, 15C2, 12C5, 12C2

5, i, 20S6, 12S10, 12S3
10, 15σ}

2.5 Fundamental Tile Domain
Given that the oriented tetrahedron group has twelve dis-
tinct symmetry operators, we know that for this class the
sphere will be covered with 12 identical tiles. The letter
“f” that appeared 12 times across the oriented tetrahedron
(Fig. 3b) can be viewed as the placeholder for such a tile.
But to what area of the original tetrahedron face does this
tile correspond? We can readily split that face into three
congruent shapes in many different ways (Fig. 4).

(a) (b) (c)

Figure 4: Three possible tilings of the oriented tetra-
hedron.

At the vertices, where different tiles come together, variants
(a) and (b) form quite different patterns. In addition to the
vertex of valence 3 formed in the middle of the face, variant
(a) also has 3 vertices of valence 2, as well as 3 vertices of
valence 6. Variant (b) has 3 vertices of valence 4, as well as
4 vertices of valence 3. Also, in (a) the basic tile shape is
triangular, while in (b) it is quadrilateral.

Since the users of our program may be inspired by Escher’s
work in the plane and may take motifs and tile shapes from
these planar patterns, we wanted to make the conversion to
the spherical domain as easy as possible. When the preferred
tile shape is based on a triangle or a quadrilateral, the user
should be able to start with the same basic tile domain on
the sphere. We found that it was important to provide both
starting patterns, corresponding to variant (a) and (b), even
though they belong to the same basic symmetry group. The
tiling in Figure 4c can be obtained as a modification of either
of the other two schemes.

3. THE PROGRAM
To create an Escher Sphere, the user chooses an initial tile,
modifies the tile boundary, and adds detail. On the system
side, the program has four major components; a way to help
the user select a tiling (Section 3.1); a way to allow the user
to modify the tile shape (Section 3.2); a way to decorate the
tile with a height field (Section 3.3); and a way to create a
solid tile ready for manufacturing (Section 3.4).

3.1 Symmetry Group and Tiling
To begin the user must select one of the predefined symme-
try groups. But what does it mean to select the Oriented Oc-
tahedron/Cube? Even though cube and octahedron, as well
as icosahedron and dodecahedron, are duals of one another
and thus are in the same symmetry group, their appearance
is quite different. Because it is difficult to understand the
meaning of different spherical symmetries, we have the user
start by selecting from the more familiar Platonic solids. We
find that users often have a basic tile shape in mind, or even
a planar Escher tiling, from which they want to start their
own explorations. The explicit Platonic shapes provide a
more intuitive starting point.

Thus, in our program the seven spherical symmetry groups
expanded into eleven starting shapes: the straight and ori-
ented versions of each Platonic solid, plus the special double
tetrahedron. Within any one of these shapes, the user must
select a particular tile domain. This step has been intro-
duced because we wish to provide users with a basic tile
which they then deform. In the case of the oriented tetra-
hedron tessellated by 12 tiles, we provide the user with the
two starting tiles as show in Figure 4a and 4b.

3.2 Modifying the Tile Boundary
After selecting a tile, the user is given a highlighted tile
boundary to deform. This tile is drawn on a sphere along
with the complete resulting tessellation. The user can de-
form the tile boundary by inserting points and moving them
around on the sphere. The tile boundary is constrained to
pass through the vertices of the basic tile, but an arbitrary
number of points can be inserted along the edges. As the
user manipulates a point, the system automatically adjusts
all corresponding points on the whole sphere, based on the
chosen symmetry (Fig. 5).

Figure 5: Corresponding tile boundary points move
concurrently to maintain symmetry.

Internally, the edges of the basic tile are enumerated and
edge correspondence has been precalculated for each group.
Thus, when a new point is inserted, the system knows where



other points must be inserted to maintain symmetry. All
corresponding points have references to each other so that
when the user moves a point, all corresponding points are
moved concurrently. In this way, the user always sees a
complete, flawlessly tiled sphere.

3.3 Adding a Bas-Relief
In addition to changing the tile boundary, points and line
segments can also be added for interior detail - for exam-
ple, to create eyes or fins for a fish tile. Since most SFF
processes can only produce uniformly colored parts, distin-
guishing features within a tile have to be provided as geom-
etry. Following Escher’s carving paradigm, it is thus natural
to decorate the tiles with a bas-relief. To keep matters sim-
ple and reduce fabrication problems, we restrict any such
tile modification to adjustments of a radial height field.

Because it is difficult to manipulate three-dimensional points
with a two-dimensional input device and display, editing the
tile boundary and adjusting the height offsets have been
separated into different modes. To create a bas-relief, the
user first adds an arbitrary number of interior points to the
tile. By direct manipulation, the height of these points can
be adjusted individually or in groups (Fig. 6). This makes
it easy to add hillocks, ridges, or grooves, and to shape the
tile surfaces in a rather naturalistic manner – if so desired.

Figure 6: Modifying radial height offsets to create a
bas-relief.

Because the points are added individually, the resulting sur-
face is a relatively coarse polyhedral description. An obvi-
ous enhancement of the user interface would be to introduce
some smooth surface modification schemes in which a region
of selectable radius can be pulled or pushed with a weight-
ing factor that falls off radially with the distance from the
action point [6][7].

3.4 Creating a Solid Tile
The tile surface is described as a triangle mesh of all the user-
defined points, in the interior of the tile and on its boundary.
A triangle mesh is created by first stereographically project-
ing the tile boundary, interior points, and interior lines onto
the plane touching the sphere at the tile centroid. These 2D
points are then triangulated with Shewchuk’s constrained
Delaunay triangulation [14] and the calculated connectivity
is used to triangulate the 3D points. This scheme has worked
well in all our designs. Tiles that reach half-way around the
sphere are necessarily quite skinny, and thus the projective
distortions do not strongly affect the resulting triangulation.
It is thus not necessary to calculate the Delaunay triangu-
lation on the sphere.

Finally, the surface is radially extruded, inward or outward,
to create a solid. The bottom surface of the solid can be an
offset of the top surface or it can be spherical so that the
tiles can be glued onto a round surface.

4. RESULTS
With our system we have successfully designed and fabri-
cated several Escheresque sculptures. The color plate shows
pictures of manufactured Escher spheres using fish and lizard
tiles.
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Plate 1. Editing a 60 tile sphere with icosahedral symmetry. Plate 2. Tiles fresh out of FDM machine.

Plate 3. Tiles freed from their support and joined in interlocking pairs. Plate 4. Tiles fit around a tennis ball.

Plate 5. Three different types of Escher spheres with 12 tiles.
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