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Activity
The puzzle is almost self-sufficient.

It is relatively easy. The colours help. People take between 2mn and 20mn to put it back together. 
Some children are very quick. There is something pleasant in reconstructing the object. It is 
relatively easy to guess which pieces get where but their orientation is a bit disconcerting.

The minimal indications should be to point out the cup and that one has to put the pieces back there 
so that the construction can hold together. If there is a hat, explain that it is there to close the object. 
In the version where 2 pieces are glued to a polygon, these have to be put last, on top.

More hints would include the existence of a core and a colour-coded onion-like structure. Also, the 
pieces get more flat as they get far from the core. Try identifying which pieces go behind the 
windows. The placement of the first two pieces help a lot: I recommend using violet ones.

Is is much easier if the player sees the assembled object and watches it being taken apart.

After it has been solved, the facilitator can reveal that the geometry comes from the fourth 
dimension and answer any question that the visitor can have.
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Mathematical explanations

A regular polygon is a polygon that is as symmetric as possible. So we want all sides to have the 
same length and all angles at vertices to be the same. 

We exclude self-crossing polygons.

A regular polyhedron is a polyhedron that is as symmetric as possible. We also exclude self-
intersection. All faces must be regular and identical. Moreover, all vertices must be shared by the 
same number of faces. These conditions turn out to be sufficient. Then we get more: the group of 
symmetries (isometries, preserving orientation or not) of the shape is transitive on flags, which 
means that if one chooses any two faces, and a side of each, and a vertex on each side, then there is 
a symmetry of the object that simultaneously matches the chosen faces, sides and vertices. In 
particular, the angle between the faces are equal, the shape looks the same at each vertices, but 
more.

There are only 5 regular polyhedra, called the platonic solids.

These are: 

• the regular tetrahedron: 4 regular triangles, 3 per vertex

• the cube: 6 squares, 3 per vertex
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• the regular octahedron: 8 regular triangles, 4 per vertex

• the regular dodecahedron: 12 regular pentagons, 3 per vertex

• the regular icosahedron: 20 regular triangles, 5 per vertex

Now 4D regular polytopes: their facets are identical regular polyhedra, arranged in a way as 
symmetric as possible. The official definition has already been given above: the symmetry group 
shall be transitive on flags. However, there is here too a simpler criterion, once we have taken 
identical regular facets: just ask the organization near each edge to be identical and the folding 
angle to be the same everywhere.

Now there are 6 possibilities:

• the 5-cells, a.k.a. pentachoron or 4-simplex, facets=reg. tetrahedra, 3 per edge

• the 8-cells, a.k.a. octachoron or tesseract or hypercube, facets=cubes, 3 per edge

• the 16-cells, a.k.a. hexadecachoron, facets=reg. tetrahedra, 4 per edge

• the 24-cells, a.k.a. icosatetrachoron or octaplex, facets=reg. octahedra, 3 per edge

• the 120-cells, a.k.a. hecatonicosachoron, facets=reg. dodecahedra, 3 per edge

• the 600-cells, a.k.a. hexacosichoron, facets=reg. tetrahedra, 5 per edge

This list coincides with the following procedure: take a certain number of copies of one regular 
polyhedron. Try to place them, side against side, around one edge. You must fit at least 3 of them. 

Q: How many can you fit ? 

A: 3 or 4 or 5 regular tetrahedra fit around an edge. Or 3 octahedra, or 3 cubes, or 3 dodecahedra.
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In higher dimension, the list continues but surprisingly has only 3 elements for each dimension n: a 
generalized tetrahedron: the n-simplex, a generalized cube, and a generalized octahedron.

This makes the 120-cells one of very few exceptional gems.

Counting

The 120-cells has 600 vertices, 1200 edges, 720 faces of dimension 2 (pentagons), and of course 
120 facets.

Its symmetry group has 120×12×5×2=14400 elements, this is 120 times more than for the regular 
dodecahedron.

At each edge meet 3 facets, at each vertex meet 4 facets.

Measuring

The angle between facets is 144°, i.e. 2/5 of a full turn, which is remarkable because an irrational 
angle would have been expected (for instance, the angle between faces for the icosahedron has a 
cosine of -1/√5 and is not a rational number of full turns). In other words, the folding angle is 1/10 
of a turn. This turns out to have an explanation: there are closed chains of 10 facets touching along 
faces and whose centres are aligned in a common plane passing through the centre of the 120-cell.

All the vertices belong to a hypersphere (set of points at a given distance from a given point).

If we fix an edge length of 1, then the smallest disk containing the pentagon has radius ≈ 0.851 
(diameter ≈ 1.701), the sphere containing the dodecahedron a radius ≈ 1.401 (diameter ≈ 2.803) the 
hypersphere containing the whole object a radius ≈ 3.702 (diameter ≈ 7.405).

Many more properties

On Wikipedia!
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Understanding
the mathematical model

Take a (regular) dodecahedron and place it on a table. The contact zone is a
pentagon. It touches 5 other pentagons. Together, they make the bottom half
of the dodecahedron. Under an orthogonal projection this half hides the upper
half. This is illustrated on the left part of the picture above.

Unfold the bottom half. This gives a flat object, 6 regular pentagons, 5 around
a central one. See the right part of the picture.

Imagine it being folded again and
think of the projection. Each face is
rotated around one edge, and the
effect on the projection is to shorten
it along the direction in the plane that is orthogonal to the 
edge, while preserving size in the direction along the 
edge, see the figure on the right. The shortening factor is 
the cosine of the folding angle: f=cos(a).

With a little bit of classical and/or Cartesian geometry, we
can determine the factor f, whence the angle a, see the 
figure on the left.
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Similarly, the 120-cells is oriented in 4D-space so that the bottom facet is parallel to the 3D-space 
on which we project. Hence as for the dodecahedron, this facet is projected without deformation: 
this is the central piece of the puzzle, cyan blue in the image above. If we try to put 3 dodecahedra, 
touching along their pentagons, around an edge, then there remains a small angular gap.

The bottom facet of the 120-cell touches 12 other facets, let them be green, that make a slight angle 
with the 3-space, hence their projections are slightly flattened in the direction orthogonal to the 
pentagon of contact with the blue. We can place in 3D-space 12 copies of the blue icosahedron 
touching its 12 faces and “fold” them in the 4D space, and we see their projection that shrink along 
the 12 normals to the 12 blue pentagons, until the small gap is reduced to nothing.
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Let us now think of the cube. Take a square in a plane and place 4 other squares touching the 4 
edges. Now fold it in 3D and think of the projection to the plane. The folding angle is 90°. The 
projection of a folded face is a segment! These four segments form a shell that completely encloses 
the square.

An interesting example is the regular dodecahedron balancing on one edge. On the projection (see 
the image on the left) we only see 4 polygons. It turns out that there are 4 polygons projected to 
lines and 4 situated on the top. The top and bottom polygons are aligned in pairs and projected 

down to the same polygon. There is a difference
with the case of the cube above: if you take the 
faces that are projected to lines, those lines do 
not cover the whole contour of the projected 
figure. This is illustrated on the right.

Below in the centre figure we show what the orthogonal projection photograph would look like. On 
the left we rotated the object slightly before the projection. On the right we removed the inner 
details to show only the outline.
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Two similar thing are happening for the projection of the 120-cell to 3D-space: 

• 90 of the 120 dodecahedra come in pairs 
projected to the same piece.

• The remaining 30 are projected flat because 
they make an angle of 90º with the 3D-space. 
Together, they make a shell enclosing the 
whole projection, but this shell has holes, 
where one can see (yellow) pentagonal faces 
of some of the inner non-flat pieces. These 
pieces touch their symmetric piece exactly on 
this pentagon.

The Pieces of the puzzle come in 4 non-flat flavours, plus the flat version used in the shell. This is 
because the angle of the dodecahedra with the 3D space, thus flattening ratio of the piece, depend 
on the distance of the centre of the piece to the centre of the puzzle. They are also not all flattened 
according to the same axis.
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30 pieces.
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Below: dodecahedra, before and after flattening.
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Reconstructing the projected object layer by layer

Perspective view from the side

Orthographic view from above
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Constructing
the mathematical model

If you ask a mathematician what it means to construct the 120-cell, s/he will probably reply that it is
“proving the existence of a polytope made of 120 regular dodecahedra and on which the symmetry 

group is transitive on flags”. This is—not—what we will do here.

The puzzle pieces

If we are only interested in the shape of the 5 types of piece in the puzzle, all we need is:

• a model of the dodecahedron,

• for each type, the axis of the flattening

• and the amount of flattening.
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We have already seen which axes the flattening must have, and we know the flattening factor for 
three out of 5:

• central piece: no flattening

• layer 1: axis perpendicular to a face, factor f1 = cos(144°)

• layer 2: axis through a pair of opposite vertices, factor f2 = ?

• layer 3 : axis as in layer 1, factor f3 = ?

• layer 4 : axis through midpoints of opposite edges, factor f4 = 0 (flat!)

As it turns out, the factors are quite simple:

• f1 = ϕ/2 = 0.809017…

• f2 = 1/2 = 0.5 

• f3 = ϕ ‒ 1 = 0.618034…

where ϕ = (1 + √5)/2 is the golden mean.

Vertices of the regular dodecahedron

Mathematical models of the regular dodecahedron can be found on the Internet. Of course it 
depends on what we mean by modelling and there are many possibilities. We may for instance want
a list of vertex coordinates (and a way to group them into faces). Or a method to define the planes 
containing the faces. Or a set of instructions to define points (ruler and compass style). Or an 
abstract definition by a set of characteristic properties. Etc.

We keep our practical application into mind and give a
particular set of vertex coordinates, shamelessly borrowing it
from Wikipedia: take all the points of the form

(±1, ±1, ±1)
(0, ±1/ϕ, ±ϕ)
(±1/ϕ, ±ϕ, 0)
(±ϕ, 0, ±1/ϕ)

where the ± are independent. This defines the 20 vertices.

The figure on the right has a coordinate system which is left-
handed with y-axis up. I am used to right-handed with z-axis
up, I’ll try to avoid mistakes.

Here the side length (2×r1) = 2/ϕ. You have to scale it if you want another value for r1.

Here also, a segment mid-point is on the vertical axis.
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If you want on this axis a face centre instead, you have to rotate the object along the horizontal axis 
labelled x on the figure by an angle that can be determined by some classical geometry: it is the 

angle A=Ĉ2C3C1   where C1 is the segment midpoint on top, C2 is the centre of a face touching the

segment, and C3 is the centre of the dodecahedron. This triangle is rectangle at C2. There are several
ways to get the value of the angle, it is for instance half of the folding angle: A = 37.7175…°. 
Another way is to use the explicit coordinates and work out the coordinates of the three points, then 
the cosine of A by a vector product.

If you want a vertex on the vertical axis, you have to rotate along the horizontal axis labelled z on 

the figure, by an angle A=Ĉ0 C3 C1  where C0 is one of the endpoints of the segment on top.  Here 

also the triangle is rectangle, this time at C1. One gets A = 20.9052…°.

How do you perform these rotations? See the toolbox near the end of this document. Note that you 
do not really need the value of the angle: what you actually need is its sine and cosine.

The 120-cell

Now one may be interested in how the dodecahedra are placed in 4D-space to form the 120-cell. 
This may be useful for instance if one wants to create a variant of the puzzle where the 120-cell is 
oriented differently in 4D space before being projected to 3D space. We may also be interested in 
measuring the object, and in the methods that can be used to discover some of those values. 

So let us consider the 120-cell. Each facet is a regular dodecahedron. The regularity condition on 
the 120-cell implies in particular that all facet centres lie at the same distance from a common point,
i.e. they are on a hypersphere. 

Centre it on the origin, in a chosen coordinate system (x,y,z,t). We want this system to be 

orthonormal, so that vectors (x,y,z,t) have length √ x2+ y2+z2+ t2 . 

Now if we know the ratio between the radius r4 of the hypersphere and the size of the 
dodecahedron, we are basically done, as explained later.

There are several size measures that can be attached to a dodecahedron: the edge length, the radius 
of the sphere containing its vertices, or the midpoints of all segments, all face centres, etc.… We 
choose to use the radius of the sphere containing the face centres and call it r3.

Consider also the distance from a face (pentagon) centre to a segment mid-point, call it r2, and call 
r1 the half length of a segment. Then:

r4

r3

= tan
A3

2

r3

r2

=tan
A2

2

r2

r1

=tan
A1

2

Where A1, A2, A3 are the angle between the consecutive segments/faces/facets.
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This is illustrated below.

Often, it is easier to get first the folding angle F and deduce A from it, because 2A + F = 180°.

For instance, 5F1 = 360° because we have a regular pentagon and must distribute one full turn to 5 
corners, whence A1/2 = 54°, tan(A1/2) = 1.376381…°

The angle F2 has a cosine equal to the quotient h/H in the
figure besides, so cos F1 = tan 54° / tan 72° whence A2/2 =
58.2825…° tan(A2/2) = 1.618034…° In fact it turns out to
be the golden mean.

The angle F3 may be determined similarly and with a bit
of work one finds F3 = 36°, which is remarkable. Whence
A3/2 = 72°, tan(A3/2) = 3.077686…°

Summary:

• r2/r1 = tan(A1/2) = 1.376381…

• r3/r2 = tan(A2/2) = 1.618034…

• r4/r3 = tan(A3/2) = 3.077686…
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Left: two faces and the dodecahedron. Right: section by the plane passing by the triangles.
Proportions and angles modified on the right for more readability.
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Once we have r1, …, r4 the distance between any pair of the following 5 points in the 120-cell can 
be determined easily:

• centre C4 of the 4D object,

• centre C3 of a facet (dodecahedron),

• centre C2 of a 2D face (pentagon) of the facet,

• midpoint C1 of an edge of this face

• and endpoint C0 of this segment.

That is because the vectors whose length we measured by

r1=d(C0,C1), r2=d(C1,C2), r3=d(C2,C3) and r4=d(C3,C4)

are all orthogonal. So for instance the radius of the sphere passing through all vertices is d(C0,C4) = 
r1

2+r2
2+r3

2+r4
2.

Reflections

We choose a coordinate system (x,y,z,t) for 4D-space and (x,y,z,t)→(x,y,z) for the projection to 3D-

space. We centre the 120-cell on the origin.

If we want one dodecahedral facet to be projected without any flattening then its supporting plane 
has to be parallel to the (x,y,z,0) hyperplane. It has to be on top or at the bottom and the distance 
from this plane to the centre of the 120-cell has to be r4.

In other words we take all the vertex coordinates in 3D space of our regular dodecahedron (with a 
size determined as in the study above), and define for each such triple (x,y,z) a point in 4D-space 
(x,y,z,r4). This gives our first, topmost, facet. Its centre is (0,0,0,r4).

A neat way to deduce the position of other facets in the 120-cells is via reflections. Indeed, consider 
a facet f, and a (pentagonal) face thereof. Consider then the reflection across the hyperplane passing
by the centre C4 and containing the face. The image of the facet f by this reflection is precisely the 
facet that touches f on the chosen face. This is the exact analogue of what happens for regular 
polyhedra, subtracting one dimension to all considered objects.

Take our first facet, the one that we placed on top. The 12 reflections associated to the 12 faces give
us 12 facets that project to the first layer (in green in our illustrations) around the central piece of 
the puzzle (in cyan blue or gold in our illustration). The next layer (violet) has 20 facets and since 
they all touch green facets by faces, they can be deduced from them by appropriate reflections. One 
can work out a set of 20 appropriate green faces by closely looking at the pictures. The next layer of
t=12 facets (yellow or pink) is obtained by reflecting each green ones using its face opposite to the 
central piece. The outer shell is made of 30 (blue) facets, they all touch 2 violet and 3 yellow/pink 
ones, any of which can thus be used to construct them. They somehow are in correspondence with 
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the edges of the central dodecahedron of the puzzle. Their centres are all in the hyperplane t=0 and 
they all get projected flat in 3D-space.

As a variant, one can compute one polyhedron of each colour, and then use (part of) the symmetry 
group of the dodecahedron to construct the rest. Each symmetry is here to be understood as acting 
on (x,y,z,t) by leaving t unchanged and modifying (x,y,z).

Another variant is to use the flattening factor to deduce the angle between the dodecahedra centres 
as viewed from the 120-cell centre, and knowing that the projected centres will be aligned to 
specific direction with respect to the central projected dodecahedron, one can also work out 4D 
coordinates.

Whatever is the chosen method, the rest of the 120-cell can be deduced from the 45 first facets 
(excluding the 30 blue ones), by a central symmetry with respect to the origin of the 4D-space: 

(x,y,z,t) →(-x,-y,-z,-t).

Here is another variant for the lazy one: explore the tree of all possible reflections, keeping a list of 
facet centres, and cutting a branch every time it grows to a facet whose centre is already in the list. 
With a computer, that uses floating point number representations, one can compare centres by 
setting some small d under which they are considered as equal. This distance must be small 
compared to 2×r3 but big enough to take rounding errors into account. Brutally this would require 
computing 12×119 = 1428 reflections and a number of comparisons of the order of 7000. There are 
a few possible optimizations (though with today’s average computer speed, this shall not be 
necessary).
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Constructing a computer model
of the 120-cell

and its projection

Representations

We have to agree on what we want to have in the computer’s memory in the end.

An elegant possibility would be to build a linear cell complex. We’ll aim at something simpler but it
is interesting to be aware of this possibility. This is:

• An indexed list of vertices given by 4D coordinates (each vertex is 4 floats).

• An indexed list of edges, each being a couple of vertex indices. Edges won’t be repeated.

• An indexed list of faces, each being a collection of 5 edge indices (preferably circularly 
ordered).

• An indexed list of facets, each being a collection of 12 face indices.

In fact it is useful too to have orientation information too, which is slightly more complicated: edges
and faces can be randomly oriented, then to each cell of dimension d, the orientation implies an 
orientation of its bounding cells of dimension d-1, which we compare to the chosen one by a 
boolean (true/false) indicating it it is the same or the opposite. Edges can be implicitly oriented by 
the order of its vertices.

Here we will aim at a different representation that is slightly less general and less linked, and has 
some amount of redundancy :

• A list of 120 dodecahedra, each being an indexed list of 12 vertices given by their 
coordinates, together with a boolean for each dodecahedron, related to orientation 
considerations.

We do not merge identical vertices, so the same vertex will appear 4 times because each vertex 
belongs to 4 dodecahedra. 

The vertices are numbered from 1 to 12 (or 0 to 11) and each dodecahedron is an image of the top 
one by an isometry of 4D-space such that the numbering of vertices match. The boolean then 
indicates whether this isometry is orientation preserving or reversing.
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The faces are then given by the same data for the 120 dodecahedra: a length 12 list whose elements 
are lists of 5 indices. This means that after an isometry applied to one dodecahedron, the new 
dodecahedron inherits a numbering of its faces and vertices.

Building

The dodecahedra are built by layers as explained in the previous section, using reflection across 
faces (we saw that there are other methods, but here we only explain this one). The 120-cell is 
centred on the origin. The first dodecahedron is placed at t=r3. To perform the reflections one needs 
a function that takes the coordinates of the face vertices (3 vertices are enough: they cannot be 
aligned and together with the centre of the 120-cell they define the 3D-plane of reflection that is all 
we need) and a list of (20) points given by their coordinates and returns a list of (20) reflected 
points. And don’t forget to invert the orientation flag.

What I did is to first do Schmidt orthonormalization* on the triple of vectors from the origin to the 
three chosen vertices in the pentagonal face (*: look that up on the Internet or in a book). Now a 
reflection with respect to the hyperplane passing through the origin and directed by an orthonormal 
basis a,b,c is simply

v→2p ‒ v

where p is the projection of v on the hyperplane, which can be computed as

p = (v∙a)a + (v∙b)b + (v∙c)c.

The list of reflections that have to be applied can be deduced by careful observation of the 
successive layers. It amounts to a list of 119 elements of the form [F,f] where F is the number of a 
previously constructed facet, so strictly less than the index of [F,f] in the list, and f is a face number 
between 1 and 12 (or 0 and 11). I reduced it to 59 elements by using the central symmetry of the 
120-cell, v→-v. It may be even reduced even further.

Determining this list may be partially automated. For instance it begins with (I use the usual 
programming convention where indices begin with 0):

[0,0], [0,1], [0,2], [0,3], … , [0,11].

There are many possibilities that will give the right result, and I leave it to the reader to make one’s 
choice.

Projecting

If one wants to reconstruct the puzzle presented here, just apply the projection

(x,y,z,t) →(x,y,z)
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to each vertex. You only need to do it for the 45 dodecahedra above the equator, i.e. whose centre 
has a positive t (and maybe also the 30 of the shell, whose centres have t=0).

One may want to correct the orientation of the dodecahedra whose orientation are marked as 
reversed: it depends on the 3D software that will use the data but usually one must give the vertices 
in a face in some particular order, according to the outward pointing orientation. Recall our vertices 
are designated by their indices between 1 and 20 (or 0 and 19) and faces by a list of 5 indices. Just 
reverse the order of this length 5 list for each face.

If you ever insist on projecting a facet whose centre was below the equator (i.e. t<0) then its 
orientation flag has to be reversed, I think.

Rotating in 4D

Another thing you might want to do is to use a different projection. My preference go to the 
orthogonal projections on a different 3D space. This is equivalent to first “rotate” the model in 4D-
space (by rotate I mean in fact perform an isometry) and then project it by (x,y,z,t) →(x,y,z).

See the toolbox near the end of this document for more information on performing rotations.

Examples of projected objects

A few examples are pictured on the next page. By having a given point “on top” we mean that 
before the projection the 120-cell undergoes a isometry fixing the origin so as to place the given 
point so as to maximize its t coordinate, which is equivalent to having the point on the t-axis (all 
other coordinates are 0) with t>0. 

We use the term direct for symmetries, it means orientation preserving.

At worst, I suppose you can get puzzles with 60 different pieces, all non-flat.
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Vertex on top.

7 non-flat pieces types

1 flat type

Order 24 symmetry group (group of the 
regular tetrahedron). So 12 direct.

Edge mid-point on top.

10 non-flat types

2 flat types

Order 12 symmetry group (group of the 
regular triangle in space). So 6 direct.

Face centre on top.

8 non-flat types

1 flat type

Order 20 symmetry group (group of the 
regular pentagon in space). So 10 direct.
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Constructing the physical puzzle

I have tried two different 3D prints.

The first one was ordered on one of the main online 3d printing companies, not the cheapest. It was 
printed in coloured sandstone material, and the size was adjusted for a price around 80€ (not 
counting shipping).

I could have ordered 1, 12, 20 and 12 prints of each type, but I think it saves money to send instead 
an STL file where all the 45 pieces were in position and slightly displaced so that there is sufficient 
space between them (just multiply the centre position by some factor) for otherwise the pieces will 
fuse.

On this scale, the height of the central piece (distance between the planes supporting two opposite 
faces of the central dodecahedron) is approx 18mm.

The whole model as a height of approximately 57mm.
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The stand is made of 15 identical Bristol board polygons glued together with transparent rubber 
tape. Finding the right scale for the polygons required several attempts because some unknown 
margin was to be added, and it is very sensitive: it has to be neither too loose or too tight.

Note that the upper half of the shell and the lower half have a different shape.

The second one was printed on a Makerbot Replicator II using PLA plastic. No support, no raft, 
filling: 10%.

The scale was chosen so that the height of the central piece (distance between the planes supporting 
two opposite faces of the dodecahedron) is 2 inches. The whole model has a height of 
approximately 16cm and weights around 1kg.

The overall printing process took 50h, not counting the failures. The absence of support may induce
some deformation depending on the machine so you may have to add some (in fact the yellow 
pieces in the one I printed are slightly deformed but the defect was small enough). I  presented the 
green and yellow faces so that they lay on their big face, the purple piece so that it lays on a small 
face.
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It was then painted with acrylic paint and varnished for protection.

The 30 polygons of the shell were also 3D printed separately, laying flat, and then glued with a 
soldering iron and fine threads of PLA scraps into two half-shells, one consists in 15 polygons and 
the other one in 14. This bond is rather weak so there may be a better way. The last polygon was 
glued to two yellow pieces with cyanoacrylate glue: this is because those two pieces would not hold
in place, there being non enough friction to prevent them from sliding. Note that the whole lower 
shell (or upper shell) would not fit in the printer so they really had to be printed piece by piece. 
Note also that the upper half of the shell and the lower half have a different shape, even without the 
hole on top.
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Technical toolbox

Q: How do you orthogonally project from 4D to 3D?

A: Just map (x,y,z,t) to (x,y,z),

Q: How do you compute distances in 4D?

A: The distance from (x,y,z,t) to 0 is √ x2+ y2+z2+ t2  and this is also the length of the vector v = 
(x,y,z,t). To get the distance between two points P=(x,y,z,t) and P’=(x’,y’,z’,t’), compute their 
difference v=(x’‒x, y’‒y, z’‒z, t’‒t) and take its length.

Q: How do you rotate?

A: Rotations in 2D fixing the origin are given by multiplication by a rotation matrix: [c −s
s c ]

where c = cos θ and s = sin θ. This means (x,y) → (cx ‒ sy , sx + cy).

Rotations in 3D fixing the origin are more complicated but can be recovered as compositions of 
rotations along the 3 axes, which are much simpler: the coordinate along the axis is unchanged and 
the remaining two coordinates are transformed according to the same formula as for a 2D rotation. 
Be careful about the direction of rotation (orientation). To rotate by angle A along an axis passing 
through the origin, one may use the latitude and longitude coordinates of the intersection P of the 
rotation axis with a sphere centred on the origin. Then the isometry is: first rotate along the vertical 
axis by a quantity that will put back the longitude of P to 0. Then along the appropriate horizontal 
axis to put its latitude to 90. Then rotate by A. Then perform the inverse of the second rotation 
followed by the inverse of the first.

In any dimension, an orientation preserving isometry that fixes the origin is always a composition of
simple rotations, which are defined as follows: they leave unchanged all but two coordinates, that 
they transform as above.
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About

The author: my name is Arnaud Chéritat, I am a mathematician born in 1975, specialized in 
holomorphic dynamical systems, but very fond of geometry and topology.

I got much interested in polytopes when I was 18 years old.

Later, around 2010 I decided to try 3D printing, I chose a projected polytope and sent the files to the
Sculpteo company. I added no magnets nor any mechanism to attach the pieces. When I received 
them, I realized I had no way to make them hold together, so I built a stand out of Bristol-type 
cardboard paper and, luckily enough, gravity and friction had the thing hold together.

In 2014, I 3D-printed them again in a much bigger version, in PLA with a Makerbot Replicator II, 
in the fablab CampusFab of my university (Université Paul Sabatier in Toulouse). I now bring this 
model around and show it to various people, from the very young to the adult.

Alba Málaga made paper models and used them successfully in Salon Culture & Jeux 
Mathématiques 2016 in Paris.
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